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Biography

> BS from U. of Colorado and MS from U. of Maryland

»Started at NASA Langley in 2000, duties include aerodynamic/aerothermodynamic
analysis/testing for science missions (Science Mission Directorate) and technical ledership
of technology development projects (Space Technology Mission Directorate)

» Past science mission roles:

* Mars Science Laboratory Aerothermal Lead
* Mars 2020 Aerothermal Lead
* Mars Phoenix Aerodynamic Lead

» Past technology development project roles:
* EDL Technology Development Project Supersonic Retropropulsion (SRP) Lead

» Current roles:
* Dragonfly Deputy EDL Phase Lead
e Mars Sample Return Sample Retrieval Lander Aerosciences Lead
* Descent Systems Study (Retropulsion technology development for Mars EDL)
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e Background & Motivation

» NASA studies show that powered descent starting at supersonic conditions, which has never been done at
Mars, is enabling to land human payloads (~20 metric ton payloads) within 50 meters of a target

* Low-L/D = blunt rigid heatshield surrounded by a Hypersonic Inflatable Aerodynamic Decelerator (HIAD)
* Mid-L/D = slender rigid aeroshell with body flaps

Mid-L/D Concept

Low-L/D Concept Deorbit &

Deployment Entry
a = 55°
Viesry = 4.7 kmi's
Tontry =-10.8°
Powered Descent
:';:.:T;T;uﬂ_z = Edquist, et al, “Model Design and
_ Pitchup to 80° Pre-Test CFD Analysis for a
o *PP'“"‘-“ Supersonic Retropropulsion Wind
8, 100kN engines Tunnel Test,” AIAA 2020-2230

80% throttie

. Touchdown || HIAD Retraction

» Relevant ground test data do not yét exist to determine the computational fluid dynamic (CFD) predictive
capabilities for vehicle aerodynamics during powered descent
This presentation discusses the status of testing sub-scale Mars retropropulsion

models in the Langley Unitary Plan Wind Tunnel (LUPWT) in 2022
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Motivation

The most challenging aerosciences problem for large-scale Mars entry systems is
aerodynamic interference (Al) during powered descent

NASA’s Aerosciences Evaluation and Test Capability (AETC) program established a project
to determine whether CFD methods are sufficiently accurate for calculating “challenging”
aerosciences problems at “high supersonic” conditions

* Using the NASA Langley Unitary Plan Wind Tunnel (UPWT)

This presentation discusses the status of an upcoming retropropulsion test in
the Langley UPWT and pre-test CFD analysis of Mars retropropulsion concepts

Current status: The test had been planned to be completed as far back as late 2020, but
COVID-19 and facility repair/maintenance delays have pushed the test to start no earlier
than Sept. 2022
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Outline

> Reference Vehicles

» Test Facility

> Models & Instrumentation
»CFD Solvers & Sample Results
»Summary & Conclusions

»The wind tunnel test is funded by the Aerosciences Evaluation and Test Capabilities (AETC)
office and the CFD is funded by the Space Technology Mission Directorate (STMD) Game
Changing Development (GCD) program

> Presentation is adapted from AIAA Paper 2022-0911 and AIAA Paper 2022-0912
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Nominal Reference Trajectories

» Eight LO,/LCH, engines, 177:1 area ratio (AR = A_/A*) nozzles
* 96 kN engines for Low-L/D (~50 tons at entry), 120 kN for Mid-L/D (~60 tons)

10

—— Low-L/D Reference R -
=== Mid-L/D Reference ‘ |

Geodetic Reference Altitude (km)
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Wind Tunnel Test Objectives

1. Design and fabricate subscale versions of the two Mars reference powered descent
vehicles, to test in the LUPWT

2. Test the models over a range of Mach numbers, angles of attack, roll angles, nozzle
configurations, and thrust levels that envelope the flight conditions as much as possible

3. Complete uncertainty quantification (UQ) analysis of the test data
Provide data for comparison to CFD results
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LUPWT Test Section 2

»Mach number (2.30 to 4.63) is controlled with an asymmetric sliding-block nozzle, which
used to select the ratio of the nozzle throat area to test section area

» A re-characterization of test section 2 recently was completed to select conditions for the

upcoming test :
. i ] Probe rake used for test section
* The rake data will also be factored into the test data UQ analysis re-calibration (Mach number,

Test Model support dynamic pressure, flow angularity)

Tr:?nsitif}n section section
8.50 ft Nozzle contour | 7.00f | 844ft |
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2010 Wind Tunnel Test

> Objective: Provide SRP data for CFD validation o
»Generic 5” dia. model with 0, 1, 3, 4 cold-gas air nozzles \ \‘/
>Mach = 2.6, 3.5, 4.6 ' o et
»>AoA =0, 14, 18,12, 16, 20 |
> Thrust Coefficients: CT = 0.5 to 4+

Plug Insert

Center Plugged ESP Modules High-Pressure
Nozzle Insert (3 total) Air Supply Port

Pressure Instrumentation:
118 Forebody Surface (ESP)
* 7 Forebody Surface (Kulites)
* 49 Aftbody Surface (ESP)

* 4 Internal (Kulites)

Pressure &
' Temperature \
Forebody Manifold Q-Flex Transducers Plenum  Sting
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2010 Wind Tunnel Test
Sample Schlieren Videos, Mach 4.6

>V|deos were captured at 6 to 10K frames per second




2010 Test, Effect of Thrust Coefficient
1 Jet, Mach=2.4 AoA 0

>Higher thrust pushes out the
bow shock and creates a larger
jet barrel due to a higher degree
of jet under-expansion

* Full-scale vehicle CTs > 10 are
needed based on EDL-SA studies




2010 Test, Comparison to CFD
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New Wind Tunnel Models

> High-pressure air (HPA) will flow through the model nozzles to simulate retrorockets

»The Low-L/D heatshield will have interchangeable nozzles that vary in size, location, cant
angle, and area ratio

HPA inlet

/

Low-L/D (Model 1)  Instrumentation housing Sting

Centerbody
Heatshield Z

ot

Body flaps

HPA flow path \

5in

Mid-L/D (Model 2)
Gin

!
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Wind Tunnel Model Scaling

» Geometric scaling is used for the model geometries, based on the reference vehicles

»Jet scaling is used to tailor the nozzle conditions to approximate the important jet
interaction parameters that govern the aero/propulsive interaction flowfield, such as:

* Thrust coefficient, C; = Thrust / (1/2 p_..V..2 S, )
* Ratio of nozzle exit pressure and stagnation pressure, p, / Po,2

»The wind tunnel models will use HPA to simulate the retro-rockets, so true scaling of the
flight reference vehicles is not possible

Since HPA must be used for the nozzles instead of rocket engines, and because air
and the combustion products differ thermodynamically, only one jet scaling
parameter at a time can be matched to flight
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Low-L/D Nozzle Variations

> The Low-L/D heatshield has
interchangeable nozzles that are
expected to impact test results:

 Exit area relative to heatshield area
* Radial distance from nose (R,/R,)
* Cantangle (0_,,.)

* Exit-to-throat area ratio (AR),

limited by using unheated HPA (T, = (3) 1A (AR=d, Boane0®. ©) 1B (AR=t Gom20, © 1C (AR,
~250 deg. F) Ry /Ry=0.434) Ry /Ry=0.434) Ry /Ry=0.434)

* Spacing (evenly or paired)

(d) 1D (AR=11,  Bean=0°, (e) 1E  (AR=4,  feant=20°, (f) 1F  (AR=4,  fean=5°,
R, /Ry=0.434) R, /Rp=0.6) R, /Ry=0.434)
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Presenter Notes
Presentation Notes
Discuss limitations of HPA


Low-L/D Model Hardware

> Both models were inspected at NASA Langley in August 2020
: > ) ——— -

e,
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Mid-L/D Model Hardware
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Instrumentation

Balance design

Exit Flow Guide Bale}nce Non-metric  Inlet Flow

shield Guide
= L

» Flow-through six-component force &
moment balance (Burns, et al)
* Added after model design & fabrication

e Will be first known such retropropulsion
measurements

» Discrete pressure (steady and
unsteady) on heatshield

=
j

HPA measurements

» Pressure-sensitive paint (PSP) on Themecoule

Kulite

heatshield
> High-speed schlieren video (~10 kHz)

» Qil-based nozzle plume seeding for
flow visualization (Acharya, et al)

* Added after model design & fabrication
> HPA total pressure and temperature

High-pressure
Kulite

O Surface covered in PSP

Steady pressure e
High-frequency pressure 2

_ e ©

&=
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Test Matrix Parameters

time it takes to make model/tunnel changes and by which measurements are being made
not all of which can be done at the same time

Low-L/D Model Mid-L/D Model
Nozzle configurations 1 (plugged), 1A, 1B, 1C, 1D, 1E, 1F, 2 (plugged), 2A
M_, and Re_ /ft 2.4 and 1E6, 3.5 and 1E6, 4.6 and 1.5E6
HPA total pressure up to 1500 psia
HPA total temperature up to ~250 deg. F
Angle of attack -10 to 20 deg 70 to 100 deg
Roll angle 0 and 22.5 or 45 deg 0
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Example Test Conditions for Model 1A

» Each model will be tested at combinations of Mach number (2.4, 3.5, 4.6), angle of attack, roll angle, and

HPA total pressure (p_)

» At each condition, p_ will be adjusted to achieve certain vacuum thrust coefficients (C;) that envelope the
nominal reference flight conditions
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CFD Solvers

» Loci-CHEM (F. Canabal)
* Finite volume, unstructured grids, ~200M grid cells
e Cases to date have been run as unsteady Reynolds-Averaged Navier-Stokes (URANS)

» OVERFLOW (R. Childs, L. Halstrom, K. Matsuno)

* Finite difference, overset structured grids with automatic mesh refinement (AMR), ~150-250M grid
points

* Cases to date have been run as URANS, will also run Detached Eddy Simulations (DES)
»FUN3D (C. Glass, A. Korzun, W. Wood) : ———
Used in conjunction with

* Finite volume, unstructured grids with mesh refinement, *~50M grid points retropropulsion wind
* Cases to date have been run as DES tunnel testing in 2010/2011

> Goal prior to test: solutions from at least 2 solvers per condition: 2 non-blowing + 7
blowing models, 3 Mach numbers, 3 thrust coefficients, 3 angles of attack

> More than 350 solutions completed to date
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CFD Boundary Conditions

»Tunnel inflow is taken from separate CFD solutions of the tunnel ahead of the test section — non-
uniform, vortices at the wall corners, non-zero flow angularity

» Nozzle inflow is applied at total pressure and temperature on the plenum face
Tunnel Boundary Conditions

Model Boundary Conditions

Nozzle Internal Walls
(Viscous) Model External Walls

(Viscous)

/

Mach: 01 02 2 21 22 23 24 25 Cp: 05 0 05 1 1.5 2
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Sample Solution, Model 1A

»>Tunnel Mach number = 2.4, model thrust coefficient (C;) = 1, angle of attack = 10 deg
»Over 350 solutions have been completed to date with three solvers

FUN3D time-averaged Mach number and
model surface pressure coefficient on adapted grid

4
3
2
15
1.05
0.85
0.9
Mach 02
-~ 0.7
0.4
0.3

A NWh OO~ @ =
<
i
w".
o
coooo0
¢

=)
(41}
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>Tunnel Mach number = 2.4, thrust coefficients (C;) of 0, 0.5, 1, and 2.5

Model 1A

Predicted Effect of Thrust

Wish

C;=0

| C;=0.5

1.6

Heatshield (fore) Cg,

» With increasing thrust:

Shock standoff distance increases

0.0

-0.2

* Heatshield aerodynamic axial force coefficient (C;,) decreases

C; =Thrust / (1/2pV?S, )
AoA = angle of attack

C; = aerodynamic axial force coefficient

Model 1A at Condition 05 (AoA = 0)

1.4

1.2

1.0

0.8

0.6

0.4+

0.2+

-3_§

Loci-CHEM

FUN3D

OVERFLOW

O MO01, C05, A0O (6)

@ M1A, CO05, A0O, CTO0.5 (3)
[l M1A, C05, A0O, CT1.0 (4)
[l M1A, CO05, A0O, CT2.5 (5)
O MO01, C05, A0O (50)

[J M1A, CO05, A0O, CTO0.5 (70)
[ M1A, CO05, A0O, CT1.0 (71)
[ M1A, C05, A0O, CT2.5 (72)
[l M1A, CO05, A0O, CTO0.5 (395)
[l M1A, CO05, A0O, CT1.0 (396)
[l M1A, CO05, A0O, CT2.5 (397)
[l M1A, CO05, A0O, CT2.5 (398)
O MO01, C05, A0O (271)

0.0

0.5 1.0 1.5 2.0 2.5
Cr

» Significant scatter between CFD solvers, possibly due to URANS vs. DES, causes will be investigated further
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Predicted Effect of Thrust
Model 2A

>Tunne| Mach number = 2.4, thrust coefficients (C;) of 0, 0.5, 1, and 2.5

Mizh

i Cr=0.5

Model 2A at Condition 05 (AoA = 90)

I 1.6 Loci-CHEM
. - FUN3D
" - OVERFLOW
an L
o o 15, © M02, C05, A0 (179)
H : [ M2A, CO5, A90, CTO.5 (173)
Ig_j- Bl M2A, C05, A90, CT1.0 (175)
: T Wl M2A, C05, A90, CT2.5 (177)
1.4+ O MO02, C05, A90 (67)
N B M2A, CO5, A90, CT2.5 (69)
W B M2A, CO5, A90, CT1.0 (147)
Hh iwn Cr=2.5 © [ W M2A, CO5, A90, CTO.5 (148)
. . ! & o 137 O M02, C05, A9 (343)
g IR: =] pl Q [ M2A, CO5, A90, CTO.5 (117)
H =H | o 7] [ M2A, CO5, A90, CT1.0 (118)
; il = 1.2 W M2A, C05, A90, CT2.5 (119)
H o 4] ©
i I el ) %
g : .| = g
I”« D11 T
2 ©
(O]
I
1.0
» With increasing thrust: 00
* Shock standoff distance increases
. - 0.8+— T T : : T
* Heatshield C;, does not not monotonically decrease 0.0 0.5 1.0 15 2.0 2.5 3.0
’

» Significant scatter between CFD solvers at highest C;
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Heatshield (fore) Cr x

» If nozzles have an outward radial component (cant angle = 20-deg) for a given C;:
* Heatshield aerodynamic axial force coefficient increases due to reduced plume blockage inboard of nozzles

1.6

1.4+

1.2

1.0

0.8

0.6 1

0.4

0.2

0.0

-0.2

Predicted Effect of Nozzle Cant Angle

Models 1A and 1B

Model 1A at Condition 05 (AoA = 0)

Model 1B at Condition 05 (AoA = 0)

Loci-CHEM 1.6 Loci-CHEM
FUN3D FUN3D
OVERFLOW OVERFLOW
@ © MO01, C05, A0O (6) 1.4 @ © MO01, CO5, A0O (6)
[ M1A, CO5, AQO, CTO.5 (3) @ M1B, C05, A0O, CT0.5 (169)
[l M1A, CO5, AOO, CT1.0 (4) @ M1B, C05, A0O, CT2.5 (170)
W M1A, CO5, AQO, CT2.5 (5) 1.2 O MO01, C05, A0O (50)
O MO01, C05, A0O (50) @ M1B, C05, A0O, CT0.5 (105)
[ M1A, CO5, A0O, CT0.5 (70) X @ M1B, CO5, A0O, CT1.0 (106)
[ M1A, CO5, A0O, CT1.0 (71) W 104 @ M1B, CO5, A0O, CT2.5 (107)
B M1A, C05, A0O, CT2.5 (72) . O MO1, CO5, A0O (271)
B M1A, €05, A0O, CTO.5 (395) "oy
[ M1A, CO5, A0O, CT1.0 (396)
B M1A, €05, A00, CT2.5 (397) S 0.8
W M1A, C05, A0O, CT2.5 (398) ~—
T © MO1, C05, A0O (271) o
D 0.6]
c S
5 ©
©
I
= @
I 0.2
72 @
1
0.0
5]
| | | | | | —0.21— | | | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cr Cr
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Predicted Effect of Nozzle Radial Location
Models 1B and 1E

» If nozzles are placed closer to the heatshield shoulder (model 1E) for C; > 0.5:
* Heatshield aerodynamic axial force coefficient increases due to larger area of high pressure inboard of nozzles

Heatshield (fore) Cr x

Model 1B at Condition 05 (AoA = 0) Model 1E at Condition 05 (AoA = 0)
1.6 Loci-CHEM 1.6 Loci-CHEM
FUN3D FUN3D
OVERFLOW OVERFLOW
1.4 @ © MO01, C05, A0O (6) 1.4 @ © MO01, C05, AQO (6)
@ M1B, CO5, A0O, CTO.5 (169) © MO01, C05, A0O (50)
@ M1B, CO5, A0O, CT2.5 (170) @ ML1E, C05, A0O, CT2.5 (55)
1.2 © MO01, CO5, A0O (50) 1.2 @ M1E, C05, A0O, CT1.0 (56)
' @ M1B, CO5, A0O, CTO.5 (105) : @ M1E, C05, A0O, CT0.5 (57)
@ M1B, CO5, A0O, CT1.0 (106) X O MO01, CO5, A0O (271)
104 @ M1B, CO5, A0O, CT2.5 (107) W' 10. @ M1E, C05, A0O, CT0.5 (219)
: © MO01, C05, A0O (271) © : @ M1E, C05, A0O, CT1.0 (221)
6 @ MLE, C05, A0O, CT2.5 (223)
| -
0.8 1 g 0.8 1
o
0.6 1 L 0.61 g
S c
© 5 o
e 2
0.4' q) 0.4'
I
0.21 @@ 0.2
0.0 0.0
—-0.2 — T T T T T —-0.2 — ; . T . ,
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Cr Cr
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‘ Summary

A test will be run in the NASA Langley Research Center Unitary Plan Wind Tunnel in 2022 in order to investigate
aerodynamic interference effects due to simulated (air) retrorocket nozzle plumes at supersonic freestream
conditions

>

» The main test objective is to provide relevant data so that CFD predictive capabilities for retropropulsion can be
assessed in a wind tunnel environment

» Two wind tunnel models have been designed and fabricated to be geometrically-scaled versions of the current
flight reference vehicles
 Different nozzle parameters will be explored for the Low-L/D model

» The test data will consist of:
* Six-component forces & moments from custom flow-through balance
* Steady and unsteady discrete surface pressures
* Global steady surface pressure using pressure sensitive paint
* High-speed schlieren video
* New plume seeding technique

» To date, over 350 CFD solutions have been completed at planned test conditions, with trends matching
expectations for two models with eight jets: blunt and slender

» The test will be followed by extensive uncertainty quantification and comparisons between the data and CFD
predictions, both of which will be documented in the open literature
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