
Some Context & Definitions

What is a unit?
Is this unit safety-critical? 
When should units be tested? 

• Early in development, as functions are written
• During “unit testing” phase   ☺
• This is when MC/DC is done

How are they tested?
• Run each unit with differing input-> verify result
• MC/DC: Exercise all meaningful paths for “coverage”

Why? To make sure it works right and all paths re covered

What is a condition?

What is a decision?

MC/DC Software Testing
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Four MC/DC Rules
1. Each entry and exit point is invoked   (lines 1 and 10 are tested) 
2. Each decision takes every possible outcome  (lines 7 and 9 are tested, abort (true) or don’t abort (false))

3. Each condition in a decision takes every possible outcome  
• Conditions need to be tested for both TRUE and FALSE

4. Each condition in a decision is shown to independently affect the outcome 
• Why?  This tests each condition only when it matters – when it effects outcome 
• Two primary types of MCDC1 -- may choose either of these, or a combination of both

• Unique-Cause  
• Masking

This is a Decision
These are Conditions

Examples follow

This whole thing is a “unit”
Yes

1 boolean function check_abort(boolean off_course,

boolean abort_commanded,

boolean valid_abort_command)

2  { 

3    boolean result = false;   // true if aborting;  

4    if (off_course OR      

5       (abort_commanded AND valid_abort_command))  

6    then      

7       result = true; // initiate abort sequence

8    else 

9       result = false;  // don’t abort, keep flying

10    return result; 

11  } 

Sample Code



• “Unique Cause” MCDC 
• Only one condition in a decision is changed at a time, holding all others constant, while verifying change in result 

• Example:  
• The function “check_abort” needs to be run with pairs of test cases (6,2,4,3), in that order

• Start with Cases 6 and 2, changing only “off_course” yields a different result, verifying independence of “off course”
• Next use test 2 and 4, changing only “abort” yields a different result, verifying “abort”
• Last, run cases 4 and 3,  which only changes “valid” for a different result

• N+1 tests are needed (N is the number of conditions in the decision), vs. 2N for all permutations
• This is the minimum set of meaningful test cases

“Unique Cause” MC/DC Example
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Truth 
Table 1 boolean function check_abort(boolean off_course,

boolean abort_commanded,

boolean valid_abort_command)

…

4    if (off_course OR      

5       (abort_commanded AND valid_abort_command))  

… Sample Code

Test 
Case

Conditions
(Input Variables)

Result of 
Decision
(abort=1 
not=0)

Off-
course

Abort
Cmd

Valid
Cmd

1 0 0 0 0

2 0 0 1 0

3 0 1 0 0

4 0 1 1 1

5 1 0 0 1

6 1 0 1 1

7 1 1 0 1

8 1 1 1 1

Call the function 4 times with these values:

r = check_abort(1,0,1);  // test case 6, r = abort

r = check_abort(0,0,1);  // test case 2, r = no abort

r = check_abort(0,1,1);  // test case 4, r = abort

r = check_abort(0,1,0);  // test case 3, r = no abort

Unit Test Code

4 Green 
Test Cases 
for MC/DC

All 8 Test 
Cases for 
MC/DC



“Masking” MC/DC Example

• “Masking” MCDC – relies on computer “short circuiting” – evaluation stopping as soon as a decision can be made
• The condition under test changes, but others can change as long as they will be “short circuited” (marked ”don’t care” in table) 
• Any tests including both (3 and 4), either (1 or 2), or any one of (5,6,7,8) meet the criteria

• (3,4,1,5), (3,4,2,5), (3,4,1,6), (3,4,2,6), (3,4,1,7), (3,4,2,7), (3,4,1,8), (3,4,2,8)
• Example:  

• Start with cases 3 and 4 which both must be run since there are no short circuits to verify “valid command”
• Next run either (1 or 2) and 4 since the result changes in both of those cases, to verify “abort cmd”
• Last, run one case from (5,6,7,8)  which changes “valid” for a different result

• This will require 2* 𝑁 tests, less than in the “unique cause” form of MC/DC 2023, Lorraine E. Prokop, Ph.D., NASA Technical Fellow for Software 

Truth 
Table 1 boolean function check_abort(boolean off_course,

boolean abort_commanded,

boolean valid_abort_command)

…

4    if (off_course OR      

5       (abort_commanded AND valid_abort_command))  

…
Sample Code

Test 
Case

Conditions
(Input Variables)

Result of 
Decision
(abort=1 
not=0)

Off-
course

Abort
Cmd

Valid
Cmd

1 0 0 X 0

2 0 0 X 0

3 0 1 0 0

4 0 1 1 1

5 1 X X 1

6 1 X X 1

7 1 X X 1

8 1 X X 1

Call the function 4 times with these values:

r = check_abort(0,1,0);  // test case 3, r = no_abort

r = check_abort(0,1,1);  // test case 4, r = abort

r = check_abort(0,0,X);  // cases 1 or 2,r = no_abort

r = check_abort(1,X,X);  // cases 5,6,7,or 8, r=abort

Unit Test Code

X’s are 
“don’t 
care” 
values 
since left-
to-right 
evaluation 
is stopped



• Further Reading & References:

• 1 AJohn J. Chilenski. “An Investigation of Three Forms of the Modified Condition/Decision Coverage (MCDC) 
Criterion. Technical Report”, DOT/FAA/AR-01/18, US. Department of Transportation, Federal Aviation 
Administration, April 2001.

• Standards requiring MC/DC testing for Safety-Critical code:
• Aircraft - DO-178B (Safety-critical Level A or B) 
• Automotive - ISO-26262 (ASIL D) 
• Nuclear - IEC-61508-3 (SIL 1-3)
• Spacecraft - NASA NPR-7150.2 (Class A Safety-critical)
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• Provide comments to where you’ve seen this or to lorraine.e.prokop@nasa.gov

• Related follow-on “software shorts”
• “Using gcov for MC/DC Testing”

mailto:olorraine.e.Prokop@nasa.gov


Backup for MCDC



MC/DC Software Testing One-Pager

• Standards requiring MC/DC testing for Safety-Critical code 
• Aircraft - DO-178B (Safety-critical Level A or B) 
• Automotive - ISO-26262 (ASIL D) 
• Nuclear - IEC-61508-3 (SIL 1-3)
• Spacecraft - NASA NPR-7150.2 (Class A Safety-critical)

Test 
Case

Off-
course

Abort
Cmd

Valid
Cmd

Outcome

1 0 0 0 X 0

2 0 0 1 X 0

3 0 1 0 0

4 0 1 1 1

5 1 0 X 0 X 1

6 1 0 X 1 X 1

7 1 1 X 0 X 1

8 1 1 X 1 X 1

MC/DC (Modified Condition/Decision Coverage) Rules:
1. Each entry and exit point is invoked   (lines 1 and 9 are tested) 
2. Each decision takes every possible outcome  (lines 6 and 8 are tested, abort and null) 
3. Each condition in a decision takes every possible outcome  (off_course, abort, and valid are each tested for both TRUE and FALSE)
4. Each condition in a decision is shown to independently affect the outcome - Why?  This tests each condition only when it matters – when it effects outcome 
• Three (3) types of MCDC1 -- Unique-Cause (N+1 tests), Masking (2*Sqrt(n) tests), and Unique-Cause+Masking (NPR7150.2 does not dictate which to use)

• “Unique Cause” MCDC holds all variables constant and changes only one at a time testing for unique outcome
• Example:  Only rows 6,2,4,3 in table need be tested (in that order) and represent one possible minimum set of meaningful test cases  (i.e Starting with 

row 6, changing only “off_course” in Test 2 results in a different outcome, then test 4 changes only “abort” with a different outcome, then test #3 
changes “valid” for a different outcome)

• “Masking” MCDC allows other conditions to change as long as only the condition of interest influences the outcome   (See backup for performance)
• Masking MCDC is implemented by “short-circuiting” in computer programs (i.e. stopping as soon as test criteria are met)
• Example: Any 4 tests including one of (5,6,7,8), both (3 and 4), and either (1 or 2) meet the criteria.  (i.e. (5,1,3,4), (6,2,3,4), (8,1,3,4), etc…)
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Possible Test Cases:

• 8 Cases for full Condition 
Combination Coverage 
(CCC)

• 4 Green Row Cases 
(6,4,2,3 in that order) for  
“unique cause” MC/DC

• X’s indicate “don’t care”
for “masking” MC/DC 

1  function check_abort()

2  {  

3    if (off_course OR      

4       (abort_commanded AND valid_abort_command))  

5    then      

6       abort();   // initiate abort sequence

7    else 

8       null;      // do nothing 

9    return;  

10  } 

Sample Code

1 AJohn J. Chilenski. “An Investigation of Three Forms of the Modified Condition/Decision Coverage (MCDC) Criterion. Technical Report”, DOT/FAA/AR-01/18, April 2001.



MC/DC Software Training
Introduction Notes:
- Who I am

- First in a series of software shorts on topics in software

- What is MC/DC?  Modified Decision/Coverage testing – sounds sorta “questionable”

- Way of testing the minimum set of all meaningful logic paths through the code
- Not all logical paths through the code, but only the paths that effect the outcome 

- Why do it?
- Aside from it being required for safety critical code in space and aircraft, automotive, nuclear industries –

it just makes sense!
- Not to kill someone

How to do it?
- I will go over -

- What is a unit
- What are the rules of MC/DC
- Provide simple examples of both forms of MC/DC

- And a warning – I will show some short code  – do not fear! I will step through it!
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• Hope this was helpful

• Provide comments to where you’ve seen this or to lorraine.e.prokop@nasa.gov

• Related follow-on “software shorts”
• “ “Using gcov for MC/DC Testing”

• Have a nice day!

mailto:olorraine.e.Prokop@nasa.gov




“Using gcov for MC/DC” One-Pager

References:
• 1 Comar, Guitton, Hainque, and Quinot. “Formalization and Comparison of MCDC and Object Branch Coverage”, Embedded Real 

Time Software and Systems Conference, Feb 2012.
• 2  Thomas Wucher, Andoni Arregui. “MC/DC for Space: A new Approach to Ensure MC/DC Structural Coverage with Exclusively 

Open Source Tools”, ESA Software Product Assurance Workshop 2021. 
• 3  AJohn J. Chilenski. “An Investigation of Three Forms of the Modified Condition/Decision Coverage (MCDC) Criterion. Technical 

Report”, DOT/FAA/AR-01/18, US. Department of Transportation, Federal Aviation Administration, April 2001.
• 4  Bordin, et.al. “Object and Source Coverage for Critical Applications with the COUVERTURE Open Analysis Framework”, 

Embedded Real Time Software and Systems Conference, May 2010.

• GCOV - Open-source tool used with gnu c compiler (gcc) to perform unit test code coverage analysis
• Performs Object Branch Coverage (OBC) through generation of Binary Decision Diagrams (BDD) – see example
• Object Branch Coverage had been proven1 to be equivalent to MCDC if OBC contains all “tree-like” decisions 
• Does not identify all permutations to achieve Condition Combination Coverage (CCC) (which is a good thing, limiting tests to only those meaningful)

• Can gcov be used to meet MCDC criteria?
• Yes, but some extra work must be done to ensure all decisions are “tree-like” (i.e. no graphs) – see example 

• All non-tree-like decisions can be converted to tree-like decisions1

• Non tree-like decisions have been shown to be a VERY small percentage of overall decisions in several large code bases (<1% 4 , “few” 2)
• gcov performs “unique-cause+short-circuit” MC/DC, “short-circuit” being the implementation-equivalent to the “masking” form of MC/DC
• The “taken at least once” statistic must be driven to 100% to achieve MC/DC coverage against all tree-like decisions
• Open source tools are available to identify non-tree-like decisions

• https://www.open-do.org/projects/couverture/, https://gitlab.com/gtd-gmbh/mcdc-checker/mcdc-checker
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Sample BDD’s • Guidelines
• Must turn off all optimization; run gcc with the following switches

• gcc -O0 -fprofile-arcs -ftest-coverage

• Run “gcov –b” on output and drive “taken at least once” to 100%
• Periodically or in CI

• Run tool to identify non-tree-like branches
• Rewrite all non-tree-like to be tree-like  
• Write additional unit tests to achieve 100% “taken at least once”

A

C

B
10

1

1

0

0

T

F

F

T

A or (B and C)

Tree-like

• 6 branches/edges
• 4 tests needed to cover 4 leaves

B

C

A

1

0 1

1

0

0

T

(B and C)or A

F T

Non-Tree-like

• 6 branches/edges
• 3 tests needed to cover 3 leaves

GOV results running 3 tests: #3-010, 4=011 6=101; ABC)

Taken at least once:83.33% of 6  Taken at least once:100.00% of 6

rewrite

https://www.open-do.org/projects/couverture/
https://gitlab.com/gtd-gmbh/mcdc-checker/mcdc-checker


Backup
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Effectiveness of Masking vs. Unique-cause MCDC Effectiveness of MCDC types vs. other coverages

Reference:  AJohn J. Chilenski. “An Investigation of Three Forms of the Modified Condition/Decision Coverage (MCDC) Criterion. Technical Report”, DOT/FAA/AR-01/18, US. 
Department of Transportation, Federal Aviation Administration, April 2001.


