

Portable Life Support System PLSS 101

EC5 / Gretchen A. Thomas March 31, 2011

The Space Suit Vehicle

- A Space Suit is a miniature one-person sized vehicle
- All of the functions of a larger space vehicle must be provided in a highly integrated system that is:
 - Independent
 - Mobile
 - Portable
 - Reliable
 - Compact
 - Lightweight

Life Support Functions of a PLSS

- Regulate suit pressure
- Provide oxygen for breathing, using 100% O₂
 - allows operation at lower suit pressures
 - increases mobility and comfort
 - easier to manage than an air mixture
- Remove metabolic by-products
 - Carbon dioxide
 - Humidity
 - Waste heat
 - Trace gases / odors
 - Particulates

Other Functions of a PLSS

- A PLSS also provides other vehicle support functions:
 - System control
 - System monitoring (for safety and alarming)
 - Power
 - Communication

Space Suit Architecture

Existing NASA Space Suit architecture is over 30 years old (1977) and has evolved from Apollo, Skylab and Shuttle technology and operations.

All current Space Suits are only compatible with low earth orbit zero-G activities and require regular ground based maintenance, resupply and monitoring.

Exploration Objectives

NASA desires exploration to destinations beyond LEO, long-duration Lunar, and Mars

Lunar

Autonomous Operation

Mars

- Planetary EVA
- CO₂ Atmosphere
- Regenerable/ISRU
- Long Term Use
- Ultra-lightweight
- Low Crew Overhead
- Highly Reliable
- On-orbit Maintainable
- ' Dust
- Fall Protection

Beyond-LEO

Near Term Demonstration

- 0-gravity
- Regenerable
- Short Mission Duration
- Low Crew Overhead
- Very Cold Environment
- High Radiation Environment

Long Term Demonstrati

- Planetary EVA
- Regenerable/ISRU
- Lightweight
- Low Crew Overhead
- On-orbit Maintainal
- Dust
- Fall Protection

Historical PLSS Comparison

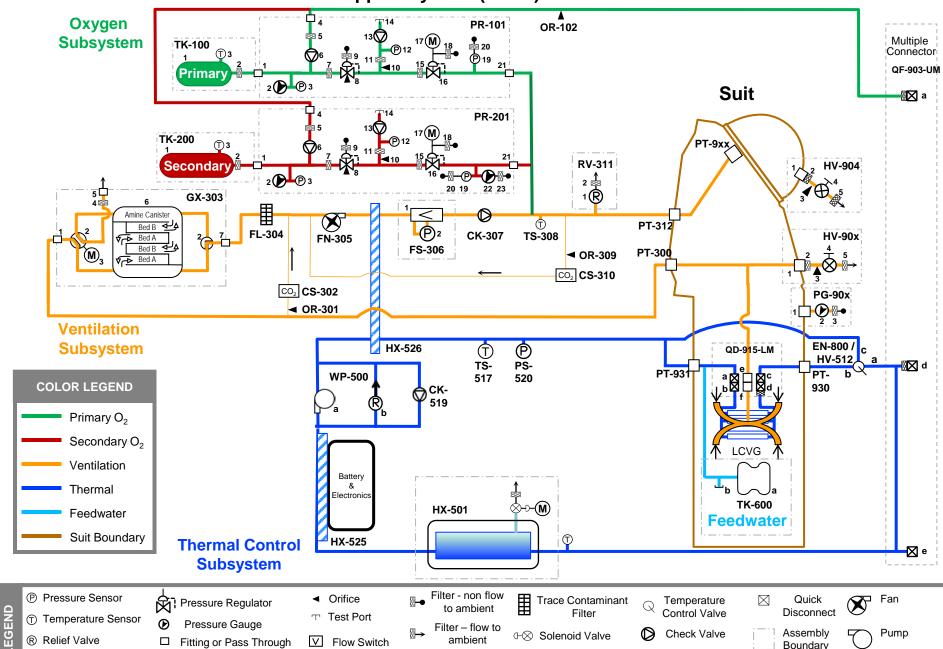
	Apollo EMU	Shuttle/ISS EMU	Lunar (CxP) EMU
Overall	~115 lbm dry	~158 lbm LiOH dry	Mass goal wet < ~108 lbm
Thermal Control	Sublimator	Sublimator	Water Evaporator (SWME)
	De-ionized water	De-ionized water	■ Potable water
	Centrifugal pump	Centrifugal pump	Positive Displacement Pump
	 Manual temperature control 	 Manual temperature control 	Manual temperature control
	No prebreathe	Lengthy prebreathe	Less prebreathe than EMU
	 Minimum flow to sublimator needed to prevent freezing 	 Minimum flow to sublimator needed to prevent freezing 	No minimum flow required
Feedwater	 15 psid O₂ regulator to provide backpressure for feedwater tanks 	 15 psid O₂ regulator to provide backpressure for feedwater tanks 	 Uses suit pressure to provide tank backpressure (eliminates regulator)

Historical PLSS Comparison

	Apollo EMU	Shuttle/ISS EMU	Lunar (CxP) EMU
CO ₂ Control	 LiOH canister (6.4 lbm) LiOH increases thermal load on PLSS thermal control unit 8-hour EVA 	 LiOH canister Metox -regenerable (14 hr & 100W & 32lbm) Both LiOH and Metox increase thermal load on thermal control unit 8-hour EVA 	 Cycling Amine (RCA) regenerates during EVA RCA – no recharging or replacement after EVA & vents CO₂ and H₂O to vacuum Dual bed allows for transfer of heat back and forth – practically no cooling required
Heat Exchanger	 Condensing heat exchanger integrated with sublimator 	Condensing heat exchanger integrated with sublimator	Non-condensing heat exchanger
O_2	 Primary O₂ = 1420 psia Secondary O₂ = 5800 psia Primary O₂ mass = 1.8 lbm Secondary O₂ mass = 5.8 lbm Mechanical regulators 	 Primary O₂ = 900 psia Secondary O₂ = 6000 psia Primary O₂ mass = 1.2 lbm Secondary O₂ mass = 2.6 lbm Mechanical regulators Two primary regulator set-points 	 Primary O₂ = 3000 psia Secondary O₂ = 3000 psia Primary O₂ mass = 1.6 lbm Secondary O₂ mass = 2.6 lbm Electronic regulators Infinite set-points
Buddy Capability	Cooling water only	No Buddy Capability	 Cooling water and ventilation capability (deleted in current activity)

Boundary

Portable Life Support System (PLSS)


▼ Flow Switch

Fitting or Pass Through

Carbon Dioxide Sensor

R Relief Valve

M Motor and Controller

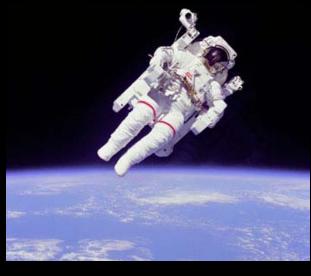
ambient

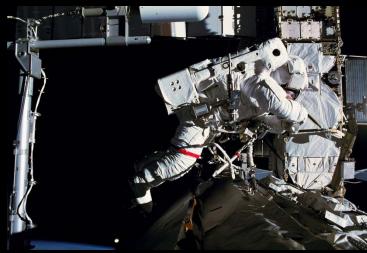
Filter

⊕⊗ Solenoid Valve

⊢⊗ Hand Valve

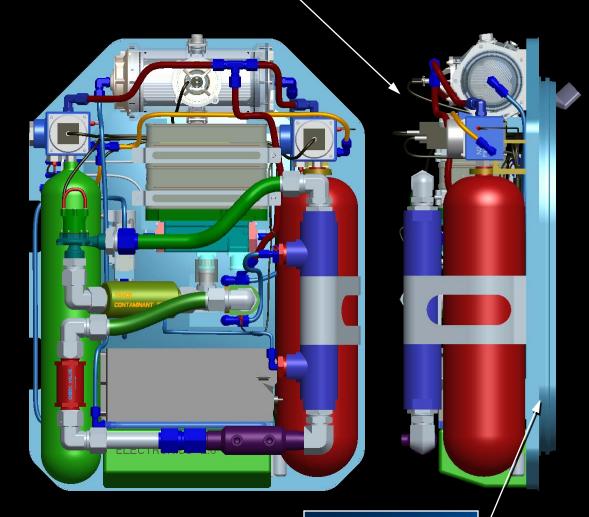
 \bigcirc

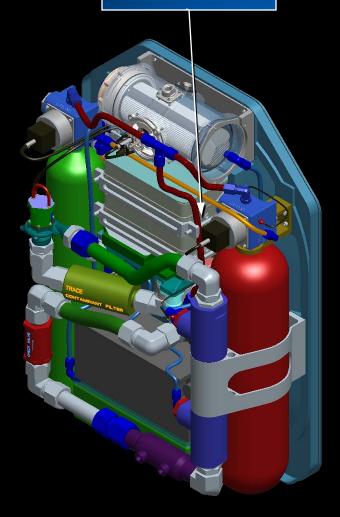

RCA Valve


PLSS Architecture Driving Requirements

- On-back Recharge
- IVA Removable
- EVA Removable
- Buddy Mode
- Environments
 - Thermal
 - Gravity
 - Atmosphere

- Suit Constraints
 - Waist Entry vs. Rear hatch
 - Work Envelope / Reach
 - Visibility
- Vehicle Constraints
 - Resources
 - Volume
 - Up-mass

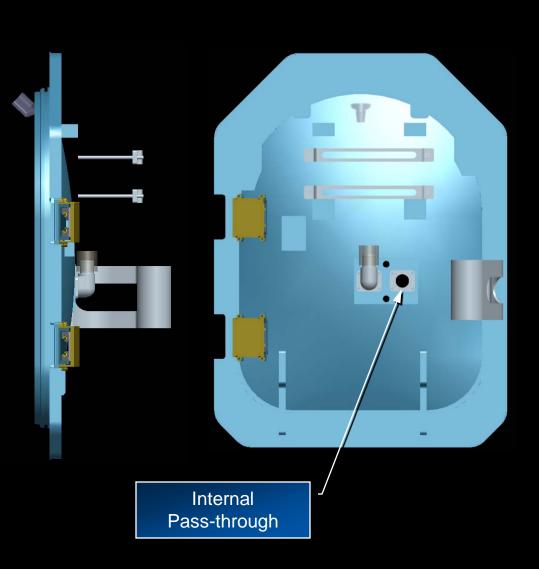


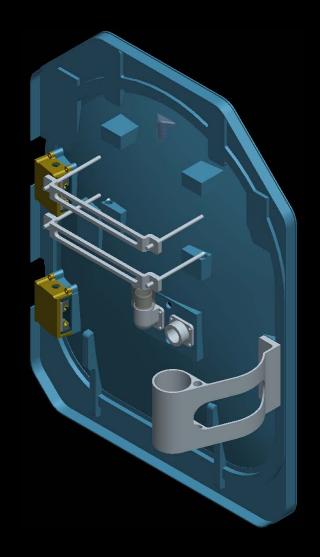


Packaging Concept Suit Port / ISS Constraints

Low Profile

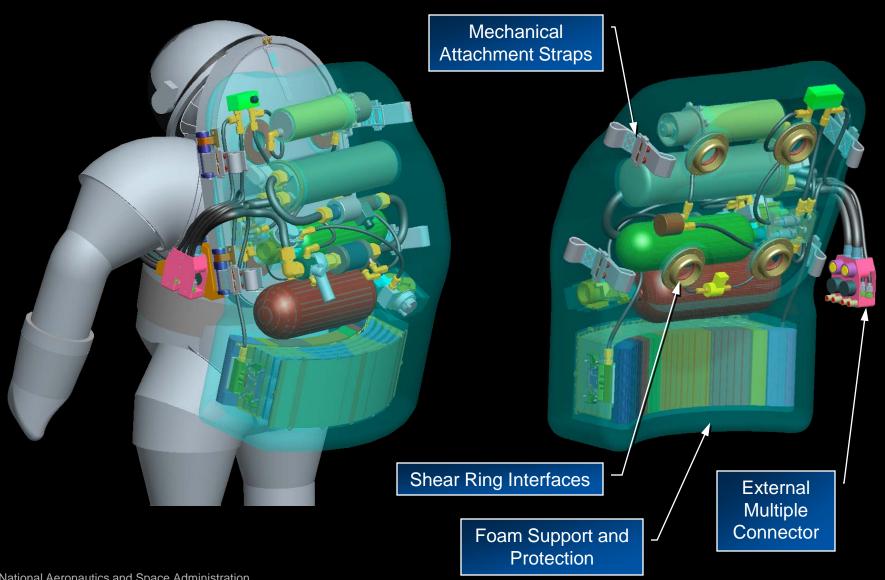
Tight Packaging /
Low Volume

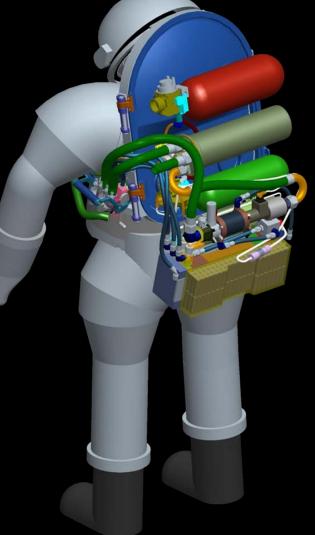




Hard Structure

PLSS to Suit Interface Concept


Mk III Hatch Constraints


Packaging Concept

Mass, Maintainability, and Impact Constraints

Packaging Concept

Vacuum-Removable and CG Constraints

1980s Space Station Freedom

Non-venting Resource Conservation Up-mass Constrained

Thermal

- Auto Cooling Control 1
- Vapor Compression Heat Pump
- •Ice Pack Heat Sink
- Wax PCM-Radiator-Thermal Electric Heat Pump
- Metal Hydride Heat Pump-Radiator

System Integration

Integrated Energy Mgmt System

CO₂/Humidity Removal

- Solid Amine Absorber
- Pumped Liquid Membrane Contactor
- Metal Oxide Absorber 1

Ventilation

Air Bearing Fan

Power

Fuel Cell

Information

- Helmet Mounted Display
- Voice Recognition

1990s Exploration Technology

Size constrained

Mass constrained

Long Mission Duration

Thermal

- Auto Cooling Control 2
- Venting Metal Hydride Cooler
- Gas-Gap Radiator
- •Freezable Radiator
- Composite Radiator
- •SWME 1
- Segmented LCG
- Piezoelectric Water Pump
- Magnetostrictive Water Pump

Oxygen

- Liquid Crystal Polymer LOX Storage
- Magnetic LOX Acquisition

CO₂/Humidity Removal

- Metal Oxide Absorber 2 & 3
- Metal Oxide Flight System
- Cycling Amine
- Cycling Molecular Sieve
- Thin Film Composite Membrane
- •Immobilized Liquid Membrane

Power

•Fuel Cell 2

System Integration

- Multiple Schematics (C, M, S-PLSS)
- Multiple Packaging Concepts

2000s Exploration + Constellation Program

Mass constrained Increased Capability Maintainable Long Mission Duration

Thermal

- •SWME 2
- Aerogel Insulation
- Liquid Cooling and Warming Garment
- Piezoelectric Pump 2

Oxygen

•Electronic Regulators

System Integration

- Constellation Schematic
- Packaging
 - -Lightweight
 - -Evolvable
 - -Maintainable

CO₂/Humidity Removal

- Bioenzyme membrane
- Cryogenic Freeze-out
- Temperature Swing Cycling Scrubber
- Photoionization/Laser Decomposition

Power

- Zirconia Cell Electrolysis
- PEM Fuel Cell

Information

- Time Modulated Ultra-Wideband Radio
- Electronic Cuff Checklist

2010s Technology Development

Increased Capability
Cost Constrained
ISS / Suit Port Compatible

Thermal

- •SWME 3
- Robust Pump

Oxygen

•Electronic Regulators 2

System Integration

- •ISS Compatible Schematic
- Integrated Breadboard
- Packaging
 - -Suit Port
 - -Mk III

CO₂/Humidity Removal

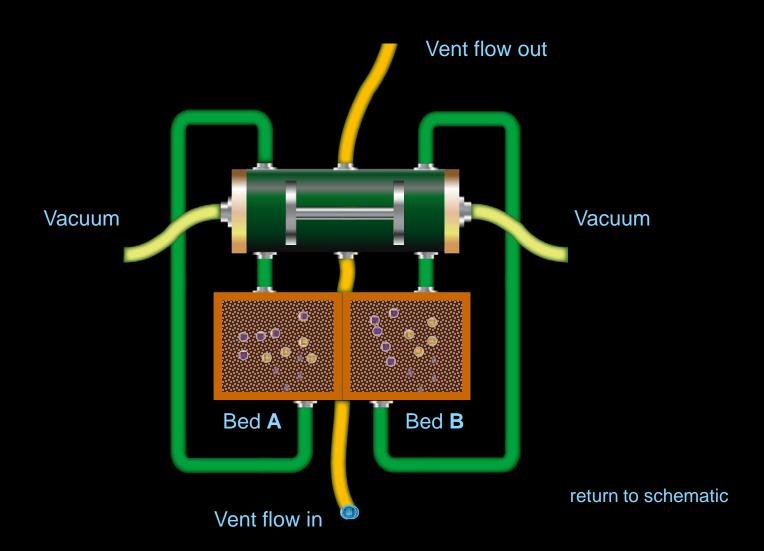
Cycling Amine 2

Ventilation

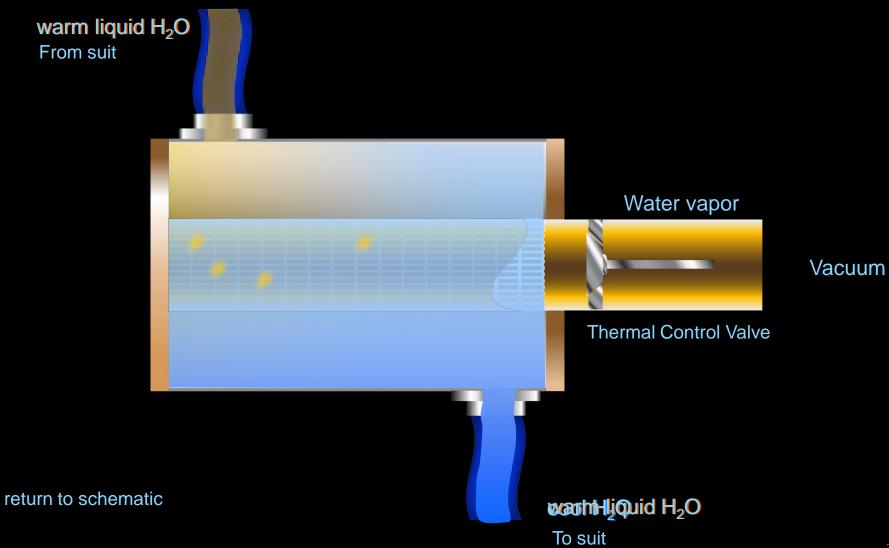
Compact Fan

Power

High Density Battery


Information

Heads Up Display


RCA

Rapid Cycling Amine

SWME

Space Suit Water Membrane Evaporator

