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Introduction 

 

The Shock Response Spectrum (SRS) models the peak response of a single-degree-of-

freedom (SDOF) system to a base acceleration, where the system's natural frequency is 

an independent variable.  The SRS method is thoroughly covered in Reference 1.  The 

purpose of this tutorial is to present some additional notes. 

   

The absolute acceleration and the relative displacement of the SDOF system can be 

readily calculated. 

 

The velocity, however, is more difficult to calculate accurately.
1
   

 

The "pseudo velocity" is an approximation of the relative velocity. 

   

The peak pseudo velocity is equal to the peak relative displacement multiplied by the 

natural frequency n  which has units of radians per second. 

 

The peak pseudo acceleration is equal to the peak relative displacement multiplied by the 

natural frequency 
2

n . 

 

The peak pseudo acceleration is thus equal to the peak pseudo velocity multiplied by the 

natural frequency n .  There may be little reason if any to calculate pseudo acceleration 

in practice, however, because the absolute acceleration can be calculated directly. 

 

 

                                                 
1
 Note that some theories claim that damage potential is more closely correlated with the 

velocity response than with other metrics, as shown in Reference 2 for example.  One of 

the advantages of the pseudo velocity SRS is that it tends to produce a more uniform SRS 

than either acceleration or relative displacement. 
 



 2 

Example 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Now consider a system with a natural frequency of 1 Hz and an amplification factor of 

Q=10. 

 

Its peak response to the El Centro time history in Figure 1 would be: 

 

 

Absolute Acceleration 0.46 G 

Psuedo Velocity 29 in/sec 

Relative Displacement 4.5 inch 

 

 

 

Note that  

 

   sec/in29Hz12)inch5.4(   
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APPENDIX A 

 

 

Equation of Motion for a SDOF System Subjected to Base Excitation 

 

 

 

 

 

 

 

 

 

 

 

 

 

m is the mass 

c is the viscous damping coefficient 

k is the stiffness 

x is the absolute displacement of the mass 

y is the base input displacement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equation of motion for a single-degree-of-freedom system subjected to base 

excitation is 

 

kyyckxxcxm                                                                             (A-1) 

 

x 

     m 

k(y-x) 

 )x-yc(   

  m 

     k c 

x  

y
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Define the relative displacement z. 

 

yxz                                                                                                    (A-2) 

 

yzx                                                                                                     (A-3) 

 

 

Substitute equation (A-3) into (A-1). 

 

 

ymkxxcxm                                                                                   (A-4) 

 

         kyyc)yz(k)yz(cyzm                                                    (A-5) 

 

kyyckykzyczcymzm                                                       (A-6) 

 

ymkzzczm                                                                                     (A-7) 

 

yz)m/k(z)m/c(z                                                                          (A-8) 

 

By convention, 

 

n2)m/c(                                                                                          (A-9) 

 

2
n)m/k(                                                                                          (A-10) 

 

Substitute equations (A-9) & (A-10) into (A-8). 

 

yzz2z
2

nn                                                                                (A-11) 

 

Recall 

 

yxz                                                                                                         (A-12) 

 

yzz2yx
2

nn                                                                           (A-13) 

 

0zz2x
2

nn                                                                                    (A-14) 
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Now assume that the damping term is approximately zero. 

 

 

0zx
2

n                                                                                         (A-15) 

 

 

 

The absolute acceleration is thus approximately equal to the relative displacement 

multiplied by 
2

n .  Note that the polarity sign is irrelevant. 

 

 

zx
2

n                                                                                          (A-16) 

 

 

 

True Relative Velocity 

 

The following derivation is intended for the time domain. 

 

                    0zz2x
2

nn                                                                         (A-17) 

 

 

                    xzz2
2

nn                                                                            (A-18) 
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