NASA Computational Aeroelastic Analyses for the Ares Vehicles

Robert Bartels Aeroelasticity Branch NASA Langley Research Center

Additional contributors to computational analyses: Pawel Chwalowski, Steve Massey, Walt Silva, Ray Mineck, Jen Heeg, Veer Vatsa and Robert Biedron.

Rationale for Doing Computational Aeroelastic Analyses

- NASA Space Vehicle Design Criteria SP-8003, "Flutter, Buzz, and Divergence":
 - "Space vehicles shall be free of flutter... up to 1.32 times the maximum dynamic pressure expected to be encountered..."
 - "...tests should be made when ... flutter analyses are doubtful or indicate marginal stability..."
 - Standard industry practice is to use steady rigid empirical, CFD or experimental data to quantify aeroelastic effects.
 - The effect of unsteady aero especially in the transonic range are typically included via buffet forcing functions. Unsteady aeroelastic coupling (i.e. feed back) is empirically estimated at best.

Overview of Analyses

- High fidelity computational aeroelastic Navier-Stokes analyses were performed to provide confidence that potential steady and unsteady aeroelastic vehicle issues were identified.
- Static and dynamic aeroelastic analyses were performed during 2007-2010 for the Ares I-X and Ares I vehicles.
- The unstructured Reynolds averaged Navier-Stokes code FUN3D was used.

FUN3D Core Capabilities

Summary of Analyses

- Computational AeroElastic (CAE) analyses using the unstructured Navier-Stokes code FUN3D.
- Analyses performed for the following Ares vehicles:
 - Ares I-X
 - Ares I
- Nominal ascent trajectory data was used.
- Aeroelastic analyses were performed using structural mode shapes.

Analysis Methods

- Several analysis formulations were used.
 - These represent the various fidelities used in launch vehicle analysis.
 - Also shown are the relative computational effort required (1 low, 4 high)

		Fidelity	Computing Required
Time marching FUN3D CAE solutions	Time accurate solutions	1	4
Reduced order model solutions using time marching FUN3D CAE System Identification (SysID)	Time accurate ROM solutions	2	3
Reduced order model solutions using a combination of both rigid steady state for higher modes with time marching FUN3D CAE SysID of first two modes	Enhanced quasi-steady time accurate ROM solutions.	3	2
Quasi-steady solutions using rigid steady state CFD line loads	Quasi-steady "dynamic" Solutions	4	1 6

Analysis Methods

- Several analysis formulations were used.
 - These represent the various fidelities used in launch vehicle analysis.
 - Also shown are the relative computational effort required (1 low, 4 high)

We will focus on results of these three analysis methods

		Fidelity	Computing Required
Time marching FUN3D CAE solutions	Time accurate solutions	1	4
Reduced order model solutions using			
time marching FUN3D CAE System	Time accurate ROM	2	3
Identification (SysID)	solutions		
Reduced order model solutions using			
a combination of both rigid steady state	Enhanced quasi-steady	3	2
for higher modes with time marching	time accurate ROM		
FUN3D CAE SysID of first two modes	solutions.		
Quasi-steady solutions using	Quasi-steady "dynamic"		
rigid steady state CFD line loads	Solutions	4	1
			-

Summary of Analyses

- Analyses performed:
 - Ares I-X Using the latest structural and trajectory models.
 - Ares I with 2 structural models:
 - Baseline structural model.
 - Thrust Oscillation Isolator Frequencies of mode 1 (longitudinal 1st bending) and mode 2 (lateral 1st bending) were approx.
 10 percent lower than for the baseline model.

Summary of Analyses

Analysis Results

- Ares I-X No appreciable static or dynamic aeroelastic issues were observed.
- Ares I with baseline structural model Somewhat lower aerodynamic damping observed than for the Ares I-X.
- Ares I with Thrust Oscillation Isolator Even lower aerodynamic damping, low enough that with the assumed structural damping total vehicle damping was marginally negative at Mach 1.

Example 1 - Ares 1 Aerodynamic Damping TOI Structural Model

Example 1 - Ares 1 Aerodynamic Damping TOI Structural Model

Quasi-steady simulation enhanced with unsteady aerodynamics of modes 1 and 2 gives a close match with FUN3D time marching results Example 2 - Uncertainty Due to Unsteady Fluid/Structure Interaction for the Ares I Vehicle Traversing the Transonic Regime

Example 2 - Uncertainty Due to Unsteady Fluid/Structure Interaction for the Ares I Vehicle Traversing the Transonic Regime

- Nearly 8000 solutions computed.
- A Reduced Order Model (ROM) with unsteady (enhanced) aerodynamics for modes 1 and 2 takes about the same simulation time as a guasi-steady simulation
- Simulations with unsteady aerodynamics of modes 1 and 2 result in larger excursions in bending moment than does a quasi-steady simulation.

Example 2 - Uncertainty Due to Unsteady Fluid/Structure Interaction for the Ares I Vehicle Traversing the Transonic Regime

Lessons Learned

- Aeroelastic coupling of the unsteady aerodynamics and dynamics of modes 1 and 2 were observed for the Ares I vehicle.
- Using rigid model derived buffet forcing functions for the Ares I may or may not have captured the maximum bending moment.
- For the Ares I with TOI, an aeroelastic (e.g. partial mode) wind tunnel test was indicated.
- Increases in vehicle flexibility (e.g. reduced 1st bending frequency) can alter the aeroelastic vehicle damping. For the Ares I vehicle it reduced the aerodynamic damping margin.
- Unsteady aerodynamic and dynamic structure coupling cannot be ignored. Some sort of method (e.g. enhanced quasi-steady ROM) that includes unsteady aerodynamic effects should be used.
- Quasi-steady methods may be unconservative and need to be verified with either an unsteady method or wind tunnel test.