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Turbofan Engine Basics 

 

 

N2 

N1 

LPC - Low Pressure Compressor 

HPC - High Pressure Compressor 

HPT - High Pressure Turbine 

LPT - Low Pressure Turbine 

N1 - Fan Speed 

N2 - Core Speed 

• Dual Shaft – High Pressure and Low Pressure 
• Two flow paths – bypass and core 
• Most of the thrust generated through the bypass flow 
• Core compressed air mixed with fuel and ignited in the 
Combustor 
• Two turbines extract energy from the hot air to drive the 
compressors 
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Basic Engine Control Concept 

• Objective: Provide smooth, stable, and stall free operation of 
the engine via single input (PLA) with no throttle restrictions 

• Reliable and predictable throttle movement to thrust 
response 
 

• Issues: 
• Thrust cannot be measured 
• Changes in ambient condition and aircraft maneuvers 
cause distortion into the fan/compressor 
• Harsh operating environment – high temperatures and 
large vibrations 
• Safe operation – avoid stall, combustor blow out etc. 
• Need to provide long operating life – 20,000 hours 
• Engine components degrade with usage – need to have 
reliable performance throughout the operating life 
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Basic Engine Control Concept 

• Since Thrust (T) cannot be measured, use Fuel Flow WF to 
Control shaft speed N (or other measured variable that correlates 
with Thrust 

• T = F(N) 
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Environment within a gas turbine  

50 000g centrifugal

 acceleration

>100g casing vibration

 to beyond 20kHz

2000+ºC 

Flame temperature

- 40ºC ambient
Cooling air

at 650+ºC

1100+ºC

Metal temperatures

10 000rpm

0.75m diameter

40+ Bar

Gas pressures

8mm+

Shaft movement

2.8m

Diameter

Foreign objects

Birds, Ice, stones

Air mass flow 

~2 tonne/sec

Aerodynamic 

Buffeting

120 dB/Hz to 10kHz

20000+ hours

Between service
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Operational Limits 

 

 

N2 

N1 

LPC - Low Pressure Compressor 

HPC - High Pressure Compressor 

HPT - High Pressure Turbine 

LPT - Low Pressure Turbine 

N1 - Fan Speed 

N2 - Core Speed 

• Structural Limits: 

• Maximum Fan and Core Speeds – N1, N2 
• Maximum Turbine Blade Temperature 

• Safety Limits: 
• Adequate Stall Margin – Compressor and Fan 
• Lean Burner Blowout – minimum fuel  

• Operational Limit: 
• Maximum Turbine Inlet Temperature – long life 
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Historical Engine Control 

Engine shaft speed 

Fuel flow rate 

(Wf) or fuel ratio 

unit (Wf/P3) 

Required fuel flow 

@ steady state 

Max. flow limit 

Min. flow limit 
Idle 

power 
Max. 

power 

Proportional 

control gain or 

droop slope 

Droop 

slope 

Safe operating 

region 

GE I-A  

(1942) 

•  Fuel flow is the only controlled variable. 
    - Hydro-mechanical governor. 
    - Minimum-flow stop to prevent flame-out.  
    - Maximum-flow schedule to prevent over-temperature 
 

• Stall protection implemented by pilot following cue cards for 
throttle movement limitations 
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• Engine control logic is developed using an engine model to provide 
guaranteed performance (minimum thrust for a throttle setting) throughout 
the life of the engine 

 - FAA regulations provide a minimum rise time and maximum 
settling time for thrust from idle to max throttle command 

Typical Current Engine Control 
• Allows pilot to have full throttle movement throughout the flight envelope 
      - There are many controlled variables – we will focus on fuel flow 
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Engine Modeling 
• Steady State performance obtained from cycle calculations 
derived from component maps obtained through detailed 
component modeling and component tests 

• Corrected parameter techniques used to reduce the 
number of points that need to be evaluated to estimate 
engine performance throughout the operating envelope 

• Dynamics modeled through inertia (the rotor speeds), 
combustion delays, heat soak and sink modeling etc. 

• Computationally intensive process since it is important to 
maintain mass/momentum/energy balance through each 
component 

• Detailed thermo-dynamic cycle decks developed and 
parameters adjusted to match engine test results 
• Simplified models generated to develop and evaluate control 
design 
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Engine Component Modeling – Modern 

Turbofan Engine 

Dynamics 

• Two physical states: fan speed, core 

speed 

• Actuator/sensor dynamics: first-order 

lags 

• Combustion delay 
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Aero-Thermodynamics 

• Compressor/Fan Maps:  PR, Corr. 

Flow & Efficiency as functions of 

Shaft Speed & R-line 

• Turbines:  Corr. Flow and Efficiency 

as functions of Shaft Speed & PR  
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Engine Dynamic Modeling – Historical Perspective 
• Dynamic behavior of single-shaft turbojet first studied at 
NACA Lewis Laboratory in 1948 
• The study showed that the transfer function from fuel flow to 
engine speed can be represented by a first order lag linear 
system with a time constant which is a function of the 
corrected fan speed: N(s)/WF(s) = K/(as+1) with a=f(N) 
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Implementing Limits for Engine Control 
 

•  Limits are implemented by limiting fuel flow based on rotor speed 
• Maximum fuel limit protects against surge/stall, over-temp, over-
speed and over-pressure 
• Minimum fuel limit protects against combustor blowout 

• Actual limit values are generated through simulation and analytical studies 

surge 

blowout 

30Ps

Wf

RN2
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N1 
N2 

EGT – Exhaust Gas Temp 

P25 

T25 

Ps3 

T3 
P2 

T2 WF36 

Typical Sensors Used for Engine Control 
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Typical Modern FADEC Control Architecture 

• The various control gains K are determined using linear engine models 
and linear control theory 

• Proportional + Integral control provides good fan speed tracking 

Structural 

limit 

regulators 

Thrust 

command 

All regulators produce incremental fuel flow commands 

Fuel flow 

command 

Fan speed regulator 

Combustion blowout regulator 

Acceleration/ 

Deceleration 

schedule 



at Lewis Field 

Glenn Research Center 
Controls and Dynamics Branch 

Control Law Design Procedure 
• The various control gains K are determined using linear engine models and 
linear control theory 

• Proportional + Integral control provides good fan speed tracking 

• Control gains are scheduled based on PLA and Mach number 

• Control design evaluated throughout the envelope using a nonlinear engine 
simulation and implemented via software on FADEC processor 

• Control gains are adjusted to provide desired performance based on engine 
ground and altitude tests and finally flight tests 
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Burst-Chop Example – Inputs/Outputs 
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Burst-Chop Example - Stall Margins 
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Engine Simulation Software Packages 

The following engine simulation software packages, developed in 
Matlab/Simulink and useful for propulsion controls and diagnostics 
research, are available from NASA GRC software repository 

• MAPSS – Modular Aero-Propulsion System Simulation 

• Simulation of a modern fighter aircraft prototype engine with a basic 
research control law:                     
http://sr.grc.nasa.gov/public/project/49/ 

• C-MAPSS – Commercial Modular Aero-Propulsion System Simulation 

• Simulation of a modern commercial 90,000 lb thrust class turbofan 
engine with representative baseline control logic: 
http://sr.grc.nasa.gov/public/project/54/ 

• C-MAPSS40k  

• High fidelity simulation of a modern 40,000 lb thrust class turbofan 
engine with realistic baseline control logic: 
http://sr.grc.nasa.gov/public/project/77/ 

 

 

 

http://sr.grc.nasa.gov/public/project/49/
http://sr.grc.nasa.gov/public/project/54/
http://sr.grc.nasa.gov/public/project/77/
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Model-Based Controls and Diagnostics 

Ground 

Level 

Engine  

Instrumentation 

• Pressures 

• Fuel flow 
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• Rotor Speeds 
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• Motivation—Thrust-to-Throttle Relationship Changes 

with Degradation in Engines Under Fan Speed Control  

Throttle Fan Speed Thrust 

Degradation- 

induced shift 

Engine Performance Deterioration Mitigation Control 
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Engine Performance Deterioration Mitigation 
Control (EPDMC) 

• The proposed retrofit architecture: 

• Adds the following ―logic‖ elements to existing FADEC: 

• A model of the nominal throttle to desired thrust response 

• An estimator for engine thrust based on available measurements 

• A modifier to the Fan Speed Command based on the error between desired 
and estimated thrust 

- Since the modifier appears prior to the limit logic, the operational safety 
and life remains unchanged 
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EPDMC Evaluation 
Thrust response for Typical Mission 

• Throttle to thrust 
response is maintained 

  – no “uncommanded” 
thrust asymmetry 

Without EPDMC 

With EPDMC 
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• Detect stall precursive signals from 

pressure measurements. 

• Develop high frequency actuators and 

injector designs. 

• Actively stabilize rotating stall using high 

velocity air injection with robust control. 

Active Stall Control 

Rotor 
Intake 

scoop 

Injector 

Compressor Stability Enhancement Using 

Recirculated Flow 

• Demonstrated significant performance improvement with an advanced high speed 
compressor in a compressor rig with simulated recirculating flow 
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Summary 

• Provided an overview and historical perspective 
of engine control design 

• The control design enables smooth and safe 
operation of the engine from one steady-state to 
another through implementation of various limits 

• There are tremendous opportunities to improve 
and revolutionize aircraft engine performance 
through ―proper‖ use of advanced control 
technologies 
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