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Typical Aerospace Industry NDI 

Requirements: 

• NDI of large structures (need one-sided approach) 

• NDI of nonuniform, multilayer, or composite structures 

• Applicability to conductive and nonconductive materials 

• 3D defect detection and visualization capability 

• High resolution and contrast 

• Noncontact operation 
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One-Sided 3D NDI Using  

Compton Imaging Tomography (CIT) 
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• Unlike other Compton backscatter methods, permits 3D imaging 
• Structure is acquired slice by slice, with subsequent stitching into 3D density map  
• 3D data can be visualized plane-by-plane or via volume rendering 

Translation 
to next slice 
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Main Features and Advantages of CIT 

• Based on X-ray Compton scattering, rather than transmission 
(as in conventional radiography) 

• Single-sided operation: suitable for large aerospace 
components 

• Works well with multilayer and composite structures, 
conducting and insulating materials, no problems with air gaps 

• 3D defect detection and localization with sub-mm accuracy 

• High penetration in typical lightweight aerospace materials 

• Easy-to-interpret output, with possibility for 3D data 
visualization 
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CIT Applications and Results 
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3D Inspection of Spacecraft  

Thermal Protection System (TPS) 
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 Preflight and postflight TPS inspection 

 In-space detection of critical micrometeoroid 
damage in TPS before re-entry 
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NDI of Aluminum Honeycomb Structure: 

Sample 

Dimensions: 300 x 300 x 16 mm 
Cell size: ~4.4 mm 
Built-in defects: simulated delamination (Teflon inserts), ~200 µm thick 

Defect 
sizes 
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NDI of Al Honeycomb: Results 
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Detection of Defects and Disbonds in 

Composite Honeycomb Structures 
Spacecraft payload 

fairing sample 
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 Applicable to any honeycomb materials 
 Scans both sides at the same time 
 Detects disbonds as thin as 3 mil (75 µm) 
 Current scan speed ~1 hr/ft2,  
     potential speed ~1-4 min/ft2 

2 in. defect 1 in. defect 

0.25 in. 
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NDI of Carbon Fiber Aircraft 

Components Through Air Gaps 
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CIT is currently the only technology capable of  
detecting defects in inner layers through air gaps 
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Corrosion and Defect Detection in Multilayer 

Aerospace Components 
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Corrosion can be nondestructively detected in hard-to-access locations of 
aerospace components by inspecting 3D images for abnormal density variations 
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Corroded Diamond Plate Behind  

Honeycomb Panels: Experimental Setup 
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Reconstructed CIT Cross Sections 

of the Corroded Diamond Plate 
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Corroded Aircraft Fuselage Section 
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Reconstructed CIT 

Cross Sections of 

Corroded Fuselage 
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3D Imaging for FOD Detection and  

Reverse Engineering 
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3D Visualization of an Aircraft Door Section 

 One-sided scanning achieves tomographic 3D imaging of large 
components in situ, without their disassembly or removal  

 Convenient GUI provides easy 3D manipulation and virtual dissection  
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Underwater NDI 

3D Reconstruction at Various Depths 

 Facilitates underwater structural analysis through non-contact, 
one-sided 3D imaging of internal structure 

 3D rendering of internal electronics structure is possible  
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In-Process, Real-Time Weld Quality Control 

Welded steel sheet Reconstructed (from 3D data) weld 
cross sections at various depths  

Measured weld cross sections (can be 
used for real-time quality monitoring) 

 CIT imaging through the whole weld 
thickness is possible in real time (while 
the weld is still hot) and can be used for 
adjusting welding parameters on the fly 

 After weld completion, 3D images can 
be used for final inspection and QC 
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CIT Hardware Development 
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Benchtop CIT Prototype  

(Early 2012) 

February 29, 2012 

Mounted test 
sample 

X-ray 
camera 

Vertical 
lead slit 

Sample 
translation 

Translation 
stage 

225-kV X-ray 
source 



POC 2014-PR038 (VG) 21 

Gen-I Mobile CIT Scanner for Aircraft NDI 

(9/2012) 

Scanning head 
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Demonstrated at Warner-Robins AFB in 2012  
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Gen-II Portable CIT Scanner for General NDI 

(9/2013) 

 Developed in NASA Phase II SBIR as an intermediate prototype 
 Includes integrated translation stage for scanning 
 Robust, can be mounted on a robotic arm to handle a variety of surfaces 
 Dimensions: ~70x45x35 cm; weight ~75 kg 
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Gen-II Portable CIT Scanner for  

Underwater NDI (3/2014) 

 Prototype developed for ONR (Navy Phase II SBIR) 
 Capable of operating at depths up to ~10-30 m 
 Includes translation stage for scanning 
 Attached to a surface with suction cups 
 Dimensions: ~70x60x50 cm; weight ~100 kg 

Underwater 
housing with  
X-ray source  
(200 kV) and 

detector 

Translation 
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(for scanning) 

Suction 
cups 



POC 2014-PR038 (VG) 24 

Gen-III Lightweight Portable CIT Scanner 

(~9/2014) 

 Currently under development for NASA R&D (Phase II SBIR) 
 Field of view: 20 cm (w) x 12 cm (h) x 10 cm (d) 
 Dimensions: 76x72x33 cm; weight ~48 kg 
 Fully enclosed system: no external moving parts  
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Key Specifications 

Parameter Value 

Resolution (x/y/z) 1.5-2.5 mm 

Field of view (width) ~10-15 cm 

Field of view (length) ~15-30 cm (depends on 
translation range) 

Field of view (depth) ~5-10 cm 

Density resolution ~2-3% 
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Resolution Characterization 

Al test sample and its CIT image 
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February 29, 2012 

Typical CIT Penetration Depth  

with a 200 – 250 kV Source 

Experimental penetration depth estimate: 

σ(E) = scattering cross section for photon energy E ~80-100 keV 
ρ = material density 

   
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Scanning Speed 

Current scanning speed: 80 min/ft2 (8-s exposure per 
1-mm slice, 15 cm (5 in.) wide) 

Potential straightforward enhancements in speed: 

System Modification Speed Improvement  

Higher-power X-ray source (3 kW vs. current  
1.2 kW) 

2.5x 

Multiple cameras (four vs. one) or large  
flat-panel detector 

2x – 4x 

Optimization of the scanning geometry, imaging 
optics, and sample irradiation uniformity 

2x – 3x 

Total: 10x – 30x 

Therefore, potential scanning speed is: 3-8 min/ft2  
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Safety 

Any NDE system utilizing X-rays is a potential safety hazard. However, 
a CIT-based NDE system is inherently much safer than comparable 
X-ray radiography systems, because: 

 Most of the generated X-ray flux is blocked immediately in front of the 
source with the slit aperture; only 1-2% of the flux is used for sample 
irradiation. 

 Backscattered X-rays not used for imaging can be effectively blocked 
by appropriate shielding. 

 Any unabsorbed portion of the X-ray beam transmitted through the 
sample can be minimized by choosing appropriate X-ray source voltage 
(lower voltage  higher absorption  fewer residual X-rays). 

The exclusion zone for the current CIT prototype: 

  ~4-5 m:  in open air (can be reduced to 2-3 ft with further optimization) 

  <1 m:  in underwater environment. 
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Future CIT Development 

Two new NASA SBIR Phase I’s recently started: 

 Multifunctional Compton Inspection Tool (MCIT) 
Improved system design, with fewer moving parts, smaller weight 
and size, and increased functionality 

 Thermal Protection Systems Nondestructive Evaluation 
Tool (THRON) 
System optimization primarily targeted at more effective 3D NDE of 
the TPS  - collaboration with SpaceX 

 

POC thanks NASA for its continued support! 


