CFD Simulations for the 2nd Aeroelastic Prediction Workshop using EZAIR

Benchmark Supercritical Wing (BSCW)

AIAA SciTech, January 2016, San-Diego CA

Dr. Tomer Rokita Rafael, RD&E Division, Aerodynamics Department

Proprietary of Rafael – Advanced Defense Systems Ltd

Who are we?

RAFAEL – Advanced Defense Systems

- Develops and manufactures advanced defense systems for the IDF, as well as for foreign customers around the world.
- Innovative solutions at the leading edge of global technology
 - Air superiority, space, underwater, naval, and ground systems

Flow Solver

• EZAIR code

- Developed by the Israeli CFD Center (ISCFDC)
- 2nd generation code following the *EZNSS* code
- Euler/Navier-Stokes finite volume solver
- 3rd order (biased) spatial, 2nd order temporal
- Chimera (overset) suite + 6-DOF motion suite
- Aeroelastic suite (modal approach)
- RANS + Hybrid RANS/LES turbulence mode
- Fully parallel MPI/OpenMP

AePW2 Cases

	Case 1	Case 2		Case 3 (Optional)	
				Ø	
			А	В	С
Mach	0.70	0.74	0.85	0.85	0.85
Angle of attack	3°	0°	5°	5°	5°
Dynamic Data Type	Forced oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Gas type	R134-a gas	R12 gas		R134-a gas	
Notes:	 Attached flow solution. Oscillating Turn Table (OTT) exp data. 	 Unknown flow state. Pitch and Plunge Apparatus (PAPA) exp data. 	 Separated flow effects. Oscillating Turn Table (OTT) experimental data. 	 Separated flow effects. Oscillating Turn Table (OTT) experimental data. 	 Separated flow effects on aeroelastic solution. No experimental data for comparison.

Computational Setup

- <u>Grid</u>: single coarse grid (C-O topology, 1.7M)
- <u>Flux construction</u>: HLLC, vanalbada limiter
- Spatial order: Up-wind 3rd (biased) order
- <u>Temporal order</u>: 2nd order with dual-time stepping (basic time step used as 1ms, with 50 sub-iterations)
- <u>Time marching</u>:

- Diagonally-dominant alternate direction implicit (DDADI)
- Line Gauss-Seidel with B2 scheme (convergence issues)
- <u>Turbulence model</u>:
 - *RANS*: kω TNT (Kok, 2000)
 - Hybrid RANS/LES (DES): X-LES (Kok, 2004)
- <u>Aeroelasticity</u>: modal approach
 - *Dynamic*: global time step coupling
 - *Static* (at flutter conditions): dynamic with high damping

RAFAEL Results – Case 1 (M=0.70, α=3°)

• Steady results:

- "Straight-forward, simple" case
- Linear regime: no shocks, limited trailing-edge flow separation
- Good agreement with experimental results

Results – Case 1 (M=0.70, α=3°)

- Unsteady (forced oscillation) results:
- Rigid-body prescribed motion (aeroelastic module is not activated)
- Time step (1ms) corresponds to 100 steps per cycle (sensitivity checked for 200 step per cycle)
- Dual-time stepping: 4 orders of magnitude convergence at each time step
- Total time recorded: 1.2sec (12 oscillation cycles) for "complete" periodicity of the signal and statistical analysis

Upper surface
 lower surface

0.8

0.3

0.2

0.4

x/c

0.6

RAFAEL

Results – Case 1 (M=0.70, α=3°)

• Unsteady (forced oscillation) results:

- Low frequency, almost quasi-steady (small time-lag in integral forces)
- Large response concentrated at L.E. (expected)
- Non-linear effect (shock) appears at upper surface^{0.1}
- Response not only in the actuation frequency

Proprietary of Rafael - Advanced Defense Systems Ltd

Results – Case 1 (M=0.70, α=3°)

• Unsteady (forced oscillation) results:

- <u>Upper surface</u>: main response at the actuation frequency, "folded" frequencies appear near shock location
- Reasonable agreement with experimental results. Double-peak magnitude behavior corresponds to shock oscillation

Results – Case 1 (M=0.70, α=3°)

- Unsteady (forced oscillation) results:
- <u>Lower surface</u>: "only" response at the actuation frequency (no shocks)
- Good agreement with experimental results. Slight phase deviation near trailing-edge might be associated with T.E. separation

Research, Development and Engineering Division

RAFAEL

Results – Case 1 (M=0.70, α=3°)

• Unsteady (forced oscillation) results:

Sum up of case 1: time-step sensitivity check showed convergence/independency

Results – Case 2 (M=0.74, α=0°)

• Steady results:

- "Straight-forward, simple" case (low lift $C_L \approx 0.2$)
- Linear regime: no shocks, limited trailing-edge flow separation
- Good agreement with experimental results

RAFAEL Results – Case 2 (M=0.74, α=0°)

• Flutter results: structural modes mapping

- Used provided structural model (NASTRAN)

RAFAEL

Results – Case 2 (M=0.74, α=0°)

• Flutter results:

- Three simulations ran: Exp. flutter dynamic pressure (168.8psf),
 -25% (pre-flutter), +25% (post-flutter)
- Simulation I.C.: rigid solution
- Recorded time: 1.6sec (dt=1ms)
- Frequency and damping calculated based on pitch angle time history

Results – Case 2 (M=0.74, α=0°)

• Flutter results:

RAFAEL

- Frequency and damping calculation of each mode response ("V-g- ω ")

Results – Case 3 (M=0.85, α=5°)

• Steady results:

- Non-linear "complicated" case (shock induced flow separation)
- RANS model, $k\omega$ TNT: convergence issues, used robust LGS+B2 scheme to converge in steady state
- Only fair agreement with experimental results; rear shock location

Results – Case 3 (M=0.85, α=5°)

- "Steady" results:
 - Hybrid RANS/LES (DES) model (X-LES): Shock-wave oscillation + spanwise structures (coarse grid is not suitable)
 - Better agreement to experimental results.

Results – Case 3 (M=0.85, α=5°)

- Unsteady (forced oscillation) results:
 - Shock wave frequency "locked" on actuation frequency
 - RANS results in a aft spanwise-uniform shock wave relative to DES (front, spanwise non-uniform)

RAFAEL

X-LES

Upper surface frequncy content $k\omega$ (TNT)

Unclassified

RAFAEL **Results – Case 3 (M=0.85, α=5°)**

- Unsteady (forced oscillation) results:
- RANS: response mainly at actuation frequency
- DES: turbulent spectrum after shock (separation)
- Only fair agreement near shock, good agreement elsewhere

Lower surface frequncy content

Unclassified

RAFAEL

Results – Case 3 (M=0.85, α=5°)

100

90

- Unsteady (forced oscillation) results:
- Better agreement for the lower surface
- Shock oscillation is not apparent in the experimental magnitude FRF results

kω (TNT)

Conclusions

- EZAIR simulations results for the 2nd Aeroelastic Prediction Workshop (AePW2) were presented, for all three cases required
- Overall good agreement with experimental results:
 - "Exact" pressure distributions for the "simple" cases (1&2)
 - Accurate flutter dynamic pressure prediction (case 2)
 - Only fair agreement for the optional case 3 (DES capabilities were demonstrated for massive flow separation; however grid refinement is required for further investigation)

Thank you!

rokita.tomer@gmail.com