

Pawel Chwalowski and Jennifer Heeg Aeroelasticity Branch, NASA Langley Research Center, Hampton, Virginia

AIAA SciTech 2016, San Diego, CA

- Robert Biedron, Bil Kleb, Beth Lee-Rausch, and Eric Nielsen from the Aerosciences Branch at NASA Langley
- Steve Massey from Aeroelasticity Branch
- Dave Schuster from NESC
- NAS, NASA Advanced Supercomputing Center

	Case 1	Case 2	Optional Case 3		
			А	В	С
Mach	0.7	0.74	0.85	0.85	0.85
Angle of attack	3	0	5	5	5
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	 Attached flow solution 	 Unknown flow state 	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution
	 Oscillating Turn Table (OTT) exp. data 	 Pitch and Plunge Apparatus (PAPA) exp. data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison

FUN3D Core Capabilities

http://fun3d.larc.nasa.gov/

- Established as a research code in late 1980s; now supports numerous internal and external efforts across the speed range
- Solves 2D/3D steady and unsteady Euler and RANS equations on node-based mixed element grids for compressible and incompressible flows
- General dynamic mesh capability: any combination of rigid / overset / morphing grids, including 6-DOF effects
- Aeroelastic modeling using mode shapes, full FEM, etc.
- Constrained / multipoint adjoint-based design and mesh adaptation
- Distributed development team using agile/extreme software practices including 24/7 regression, performance testing
- Capabilities fully integrated, online documentation, training videos, tutorials

Some Recent NASA Applications

Courtesy Bob Bartels

Aeroelastic Analysis of the Boeing SUGAR Truss-Braced Wing Concept

Open-Rotor Concepts

Courtesy Bill Jones

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Some Recent NASA Applications

Transonic Buffet Characterization for Space Launch System

Courtesy Greg Brauckmann, Steve Alter, Bil Kleb

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

Some Recent NASA Applications

Courtesy Mike Park, Sally Viken, Karen Deere, Mark Moore

http://fun3d.larc.nasa.gov

FUN3D Training Workshop June 20-21, 2015

FUN3D and High-Performance Computing

http://fun3d.larc.nasa.gov

June 20-21, 2015

- Built upon elasticity PDE-based mesh deformation
- Built in modal structural solver, same as in CAP-TSD, CFL3D, Overflow
 - Typically uses mode shapes from NASTRAN normal modes analysis
- Coupling to external FEM/CSD codes
 - Read surface displacements obtained from FEM
 - Write aerodynamic loads (C_p, C_{fx}, C_{fy}, C_{fz}) for FEM
 - Requires CFD/CSD transfer middleware
 - Special case: rotorcraft comprehensive CSD codes, CAMRAD, DYMORE

Model the mesh as a linear elastic solid governed by

$$\nabla \cdot [\mu(\nabla u + \nabla u^T) + \lambda(\nabla \cdot u)I] = f = 0$$

$$\mathcal{M} = \frac{E\mathcal{U}}{(1+\mathcal{U})(1-2\mathcal{U})} \qquad \qquad \mathcal{M} = \frac{E}{2(1+\mathcal{U})}$$

- Choose Poisson's ratio and Young's modulus to close system
 - U = const, E = E(1/V) or E(1/d)
 - Smaller cells or cells closer to surface are stiffer
- Solve linear PDE
 - Large fraction (typ. 30% or more) of cost of flow-solver step
 - Eventually will employ multigrid to speed up solution
- Geometric Conservation Law (ALE formulation) accounted for
 - Essential for free stream preservation on deforming meshes
 - Appears as a source term in flow equation residuals

	Case 1	Case 2	Optional Case 3		
			А	В	С
Mach	0.7	0.74	0.85	0.85	0.85
Angle of attack	3	0	5	5	5
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	Attached flow solution	 Unknown flow state 	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution
	 Oscillating Turn Table (OTT) exp. data 	 Pitch and Plunge Apparatus (PAPA) exp. data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison

Predicted flutter onset: q = 152 psf and f = 4.23 Hz

AePW-2 Case 2, Mach 0.74, AoA = 0°

AePW-2 Case 2, Mach 0.74, AoA = 0°

ASA

	Case 1	Case 2		Optional Case 3	
			А	В	С
Mach	0.7	0.74	0.85	0.85	0.85
Angle of attack	3	0	5	5	5
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	Attached flow solution	 Unknown flow state 	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution
	 Oscillating Turn Table (OTT) exp. data 	 Pitch and Plunge Apparatus (PAPA) exp. data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison

	Case 1	Case 2		Optional Case 3	
			А	В	С
Mach	0.7	0.74	0.85	0.85	0.85
Angle of attack	3	0	5	5	5
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	 Attached flow solution Oscillating Turn Table (OTT) even 	 Unknown flow state Pitch and Plunge 	 Separated flow effects Oscillating Turn Table (OTT) 	 Separated flow effects Oscillating Turn Table (OTT) 	 Separated flow effects on aeroelastic solution No
	(OTT) exp. data	Apparatus (PAPA) exp. data	(OTT) experimental data	data	data for comparison

	Flutter dynami	ic pressure, psf	Flutter frequency, Hz	
Mesh / Turb. Model	No Limiter	Limiter	No Limiter	Limiter
Coarse / SA	455	665	4.85	4.65
Medium / SA	477	503	5.2	5.1
Fine / SA	390	482	5.0	4.8
Fine / DDES	565	х	5.1	x

Note: Venkatakrishnan Limiter

Static aeroelastic solution at q's near flutter onset: fine grids

Flutter Onset at AoA = 5°, Coarse Grid, No Limiter

AePW-2 Case 3C, Mach 0.85, AoA = 5°

- It takes too long and significant computational resources are required to obtain flutter boundary prediction on a simple configuration like BSCW.
- There is need for tools like Reduced Order Methods to obtain flutter boundary prediction quickly.
- Spatial and temporal convergence analysis are necessary.
- 2D airfoil section analysis vs. 3D analysis.

FUN3D Analysis, Medium Grid, Mach 0.82, Steady Rigid Analysis

FUN3D Analysis, Medium Grid, Mach 0.70, Steady Rigid Analysis 60% span station