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Mesh generation

Semi-spheric domain Wing close-up

a Problems in converting the provided meshes to OpenFOAM

1 Mesh created with Pointwise through the IGES file available
on the AEPW?2 project web site

0 Spatial discretization of the domain:
= Coarse mesh with 320k cells
= Medium mesh with 690k cells



Aerodynamic solver: AeroFoam

alIn-house solver developed at
the DAST supported by
OpenFOAM libraries

ORANS, cell-centered, density
based solver for aero-servo-
elastic applications

QFirst  density-based RANS
solver Implemented In
OpenFOAM to overcome the
limits of the available pressure
based solvers In transonic
application




Aerodynamic solver: AeroFoam

a Euler-option is selected for the following simulations:
viscosity and thermal conductivity effects are not modeled

a Convective fluxes are discretized by the Roe’s
approximated Riemann solver, blended by the centered
approximation of Lax-Wendroff

a Entropy fix of Harten and Hyman and van Leer flux limiter

a Time discretization performed by an explicit multi-step
Runge-Kutta scheme of the 5" order

0 Combined dual-time stepping and a full-approximation
storage multi-grid technigue to speed up the convergence
between time steps



Simulation settings

Aeroelastic interface

0 Mode shapes downloaded from the AEPW?2 project web
site

0 Because the wing is rigid, the mesh is translated and
rotated rigidly during the simulation

a The coupling between structural and aerodynamic models
IS performed at each time step through a linear method

Aerodynamic solver parameters

a Time step convergence analysis: 1e-3, 5e-4, 2.5e-4 s

a CFL setto 2.0

0 1000 iterations in pseudo-time are allowed between each
time step

2 Two multi-grid levels are used (V-cycle)



Flutter point estimation
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a Flutter point always overestimated vs experimental value
a Error on flutter frequency smaller than damping

QO Flutter point for 320k mesh -> 1.105 experimental value
a Flutter point for 690k mesh -> 1.080 experimental value
a Flutter frequency always around 4 Hz



Experimental vs numerical flutter
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Temporal convergence at flutter speed

2 Damping variation from dt = 1e-3 to 5e-4
2 No variation of damping from dt = 5e-4 to 2.5e-4



Analysis of the flutter solution
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0 The oscillations are not symmetric with respect to the
origin

0 The average angle of rotation is negative

0 The average wing plunge is positive



Load distribution at computational flutter
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0 The computational model presents a higher peak on the
upper surface

0 Phase predicted with good accuracy, missing effect at 60%
chord, probably due to boundary layer transition



Load distribution at computational flutter
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FRF @ 95% span
0 The computational model presents a smaller peak on the
lower surface

0 Phase not well predicted, still missing effect at 60%
chord, probably due to boundary layer transition



Load distribution vs time

Lower Surface Upper Surface

Cp @ 60% span

O A weak shock moves back and forth the chord on both
surfaces

a A narrow peak Iis present on the leading edge of the upper
surface



Pressure field @ 60% span




Pressure field @ 95% span




Concluding remarks

0 Euler-based flutter simulations have been presented

0 Good accuracy in flutter estimation (error smaller than
10%) has been found

0 The flutter point is always overpredicted with respect to the
experimental value

2 Not so accurate in load distribution predictions, probably
due to non-modeled effects

2 Additional analyses with refined meshes should be carried
out to confirm the convergence toward the flutter predicted
by the experiments



Thank you!!!
Any question?



Cases under investigation

case 1) Mach = 0.7
AOA = 3°
Dynamic data type = Forced oscillation, f = 10Hz, |theta| = 1°
notes: attached flow, OTT exp data, R-134°

case 2) Mach=0.74
AOA =0°
Dynamic data type = Flutter
notes = flow state unknown, PAPA exp. data, R-12

Solver:

QExplicit - dual time stepping
adensity based

Deuler / rans (spalart allmaras / SST)
Qagrid deformation / traspiration
aGPU



FreeCASE toolbox
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AeroFoam

COARSE mesh | MNumerical solution on FINE mesh

COARSE mesh 2

COARSE mesh 3

Multi-Grid (MG) agglomeration and Full-Approximation-Storage (FAS)

Motivation and objective:

a)
b)

<)

First density-based ALE RANS solver in OpenFOAM

To overcome the limits of built-in pressure-based
solvers in the transonic regime (e.g. sonicFoam)

Benchmarking vs. EDGE and FLUENT

Features:

a)
b)

d)

Coupled formulation in conservative variables

Space discretization (1%, 2" order accuracy)

@ Roe's Approximate Riemann Solver (ARS)
@ Lax-Wendroff (LW) scheme with flux limiters
@ Directional Residual Smoothing (RS)

Time discretization (1%, 2" order accuracy)

@ Explicit multi-step Runge-Kutta (RK) scheme

@ Local Time-Stepping (LTS)

@ Double Time-Stepping (DTS)

@ Multi-Grid (MG) acceleration (FMG and FAS options)

Automatic handling of parallel communication,
cyclic boundaries, Generic Grid Interface (GGI)

=



FSI

Target: closed loop connection between structural and aerodynamic sub-systems

a) projection (in PVW sense) of aerodynamic forces onto structural displacements

b) translation of structural displacements into aerodynamic boundary conditions

Moving Least Squares (MLS):
@ connect topologically different domains
@ exact treatment of rigid motions

@ accuracy, smoothness & efficiency trade-off
Minimize /c;}(Tr(uaHr — Tr(us)|r )°dS
r

@ weighting via Radial Basis Functions (RBF)




A hierarchy of mesh deformation tools

R Least-squares identification of translation vector s and linear map tensor T
Ax;j=s+Tzxj+ej=s+(R-Dx;+Dxj+e; V j€][l, N

easier to implement, rotation tensor follows: (R — 1) =ssKx + (1 — cg ) K K«

E Elastic contribution by means of Sparse Inverse Distance Weighting (SIDW)
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memory /efficiency trade-off sparse fix: SIDW ;. ;) = IDW, ;) if IDW(y, ;) > £

T Residuals (if any) simulated by means of Transpiration boundary conditions




