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AePW-2 Analysis Codes Utilized

Linear
RANS, 

Uncoupled
Euler, 

Coupled
RANS, 

Coupled
Hybrid 

RANS/LES

• MSC NASTRAN • SU2 • OpenFoam

• CFD++

• Aero

• EZNSS

• Edge

• FUN3D • Edge

• EZAir • FUN3D

• Star_CCM+ • EZAir

• Loci/Chem

• Fluent

• CFX

• SUMAD
• ENFLOW

• NSMB



Logistics

• Comparison Results 
• All data received by the data submittal deadline have been processed, along with 

format-preserving updates from those teams)

• Data from 8 teams have been processed into the comparison data bases

• There are 14 separate comparison data bases

• Good Ideas Capture Process
• Discussions that we must table due to time and progress considerations

• Noted and revisited in path forward discussion (on agenda: 1640-1700 Sunday)

• Agenda
• Topics of common interest

• Analysis team presentations of processes, results, lessons learned

• Comparison data 



Agenda, Saturday

Time Title Presenter
Organization, 

Affiliation Team members

1500-1530 Welcome, overview, logistics, agenda Jennifer Heeg NASA

1530-1600 Fluid-structure coupling methods Mats Dalenbring FOI Adam Jirasek, FOI

1630-1700 Turbulence modeling effects Yuval Levy Israeli CFD Center
Daniella Raveh, 

Technion IIT

1700-1720 Temporal effects Jennifer Heeg NASA

1720-1740 Linear Analyses Guilherme Begnini Embraer Bimo Pranata, NLR

1740-1800
Data Comparisons Overview:Open discussion of data 

comparisons Jennifer Heeg NASA



Agenda, Sunday
Time Title Presenter Affiliation Team members

0730-0800 Open discussion of data comparisons
0800-0820 Agenda, Logistics, Data Comparison Overview Jennifer Heeg NASA 
0820-0840 Recap of Workshop Day 1 Cleber Spode Embraer

0840-0900 BSCW Geometry and Grids Pawel Chwalowski NASA

0900-0920 NSMB contribution to the AePW-2 Yannick Hoarau
ICUBE, Strasbourg 
University, France

C.-K. Huang , ICUBE, Strasbourg University, 
A. Gehri and J. Vos , CFS Engineering, 

Lausanne, Switzerland

0920-0940
CFD Simulations for the 2nd Aeroelastic Prediction 

Workshop using EZAIR Tomer Rokita
Aerodynamics department, 

RD&E Division, RAFAEL

0940-1000
ANSYS Simulation results for the 2nd AIAA 

Aeroelastic Prediction Workshop Balasubramanyam Sasanapuri ANSYS India

Krishna Zore, ANSYS India
Robin Steed, ANSYS Canada

Eric Bish, ANSYS Inc.

1000-1020 Coffee Break & Open discussion of comparison results

1020-1040 Edge analysis results Mats Dalenbring FOI

Adam Jirasek , FOI
Jan Navratil, Brno University of 

Technology, VUT, Czech Republic

1040-1100 Results obtained by ZHAW with Edge and SU2 Marcello Righi
Zurich University of 

Applied Sciences

1100-1120
Simulations for the Second Aeroelastic Prediction 

Workshop Using the EZNSS Code Daniella E. Raveh Technion - IIT
Yuval Levy , Israeli CFD Center

Yair Mor Yossef, Israeli CFD Center

1120-1140 CFD++ and Aero results
Guilherme Begnini

Cleber Spode Embraer

Aluísio V. Pantaleão
Bruno Guaraldo Neto,

Guilherme O. Marcório,
Marcos H.J. Pedras

Carlos Alberto Bones

1140-1200 FUN3D results Pawel Chwalowski NASA Jennifer Heeg



Agenda, Sunday, contd

Time Title Presenter
Organization, 

Affiliation Team members

1200-1300 Lunch

1300-1320

SUMAD Unsteady Analysis of the Benchmark 
SuperCritical Wing for the Aeroelastic Prediction 

Workshop 2 Eirikur Jonsson University of Michigan
Charles A. Mader

Joaquim R.R.A. Martins

1320-1340 Loci/Chem analysis results Eric Blades ATA Engineering

1340-1400
Flutter analysis with Euler-based solver in 

OpenFOAM Sergio Ricci

Department of Aerospace 
Science and Technology of 

Politecnico di Milano Andrea Mannarino

1400-1420 STAR-CCM+ Analysis Results Patrick McGah CD-adapco

Girish Bhandari
Alan Mueller

Durrell Rittenberg

1420-1440
Aeroelastic Prediction of the BSCW using an 

enhanced OpenFoam-based CFD Solver Amin Fereidooni
National Research Council 

Canada 

Anant Grewal (NRC)
Marcel Grzeszczyk (NRC, University of Toronto)

1440-1500 Comparison results walk through and discussion Jennifer Heeg NASA

1500-1520 Coffee Break & open discussion of comparison results

1520-1640

Comparison Results Walk through and discussion, 
contd

Jennifer Heeg NASA

1640-1700 Path forward & good ideas recap
Pam Sparks, Jennifer 

Heeg

NASA



Objectives of the Aeroelastic Prediction Workshop

• Assess the goodness of computational tools for predicting aeroelastic 
response, including flutter

• Understand why our tools don’t always produce successful predictions 

• Which aspects of the physics are we falling short of predicting correctly?  

• What about our methods causes us to fall short of successful predictions?

• Establish uncertainty bounds for computational results

• Establish best practices for using tools

• Explicitly illustrate the specific needs for validation 
experimentation- i.e. why what we have isn’t good enough

• Establish community for leveraging experiences and processes



How does validation of aeroelastic tools 
differ from validation of aerodynamic tools?

• Coupling with structural dynamics

• Unsteady effects matter

• Distribution of the pressures matters (integrated quantities 
such as lift and pitching moment often tell you little regarding 
aeroelastic stability)

• Phasing of the pressures relative to the displacements matters



AePW Building block approach to validation

Utilizing the classical 

considerations in aeroelasticity

• Fluid dynamics

• Structural dynamics

• Fluid/structure coupling

AePW-1:  Focused on unsteady fluid dynamics

AePW-2:  Extend focus to coupled aeroelastic simulations
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High Reynolds number Aero-Structural 
Dynamics Model (HIRENASD)

Benchmark Supercritical Wing (BSCW)

Rectangular Supercritical Wing (RSW)

AePW-1 Configurations



Applying the Lessons Learned; Formulating AePW-2

• One configuration only

• Benchmarking case: including a case that we have confidence can be 
“well-predicted” 

• Comparison metrics:
• Unsteady quantities for all cases

• Integrated sectional forces and moments

• Critical damping ratios and frequencies

• Extended statistics:  mean, std, mode, max, min

• Time histories from solutions requested because
• nothing is steady

• single person, single method of post-processing matters

• there’s always more to see- nonlinearities, off-nominal frequency content

• Results requested at more finely spaced points than experimental data

• Common grids suggested for analyses

• Various fidelity aerodynamic contributions encouraged

• Discussion telecons for analysis teams 
13



AePW-1 End of Workshop Summary of 
Benchmark Supercritical Wing (BSCW) Results

14

• Chosen as a challenging 

test case, flow-wise, but 

simple geometry

– Strong shock with 

suspected shock-

induced separated flow

• Some preliminary 

assessments from AePW
– Computational methods had 

difficulty producing converged 

solutions due to flow field 

complexity

– Complex flow field also 

observed in experimental data; 

Largest magnitude of dynamic 

behavior appears to represent 

shock oscillations

– CFD solutions vary widely, 

even for static solution; 

Likely plan of action:  
• Form technical working group of BSCW analysts
• Extensive study of available experimental data; characterize different flow phenomena
• Benchmark against more benign cases- lower Mach number, lower angle of attack
• Analyze the static (unforced) problem using time-accurate evaluation methods
• Study of time convergence criteria

M=0.85, Rec=4.49 million, test medium: R-134a, 

α =  5°, θ = 1°, freq 1 & 10 Hz



AePW-2 Configuration:  Benchmark Supercritical Wing (BSCW)

Cross-section at 60% span, showing the layout of

the unsteady pressures.

Airfoil section is SC(2)-0414

Model planform.  Dimensions are in inches.

x̂

ŷ 32”

16”

Pitch axis, forced 
oscillations
Pitch axis, flutter 
cases



Results from AePW-1:  
BSCW Mach 0.85 5°
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Experimental data
Bounds, ± 2 std

Colored lines with open symbols:
• Each analysis team shown by a separate color
• Each grid size shown by a different symbol

Frequency Response Function at 10Hz

Critique:
• Significant variation among 

computational results
• Inconsistent application of 

sign conventions led to 
uncertainty in phase angle 
definition

• No measure of the quality 
of the results; No 
coherence data

• Mean value 
characterization of 
experimental data 
artificially smears the 
shock (cants the pressure 
distribution, makes it less 
sharp than seen in 
instantaneous snapshots)

• Spacing of experimental 
data may lead to under-
representing the 
magnitude peak



Applying the Lessons Learned; Formulating AePW-2
• One configuration only

• Benchmarking case: including a case that we have 
confidence can be “well-predicted” 

• Comparison metrics:
• Unsteady quantities for all cases

• Integrated sectional forces and moments

• Critical damping ratios and frequencies

• Extended statistics:  mean, std, mode, max, min

• Time histories from solutions requested because
• nothing is steady

• single person, single method of post-processing matters

• there’s always more to see- nonlinearities, off-nominal frequency content

• Results requested at more finely spaced points than experimental data

• Common grids suggested for analyses

• Various fidelity aerodynamic contributions encouraged

• Discussion telecons for analysis teams 

17



Shock-induced separation assessment of 
experimental data led to AePW-2 case selection

18



Case 1 Case 2 Case 3

Mach 0.7 0.74 0.85

Angle of attack 3 0 5

Dynamic Data 
Type

• Forced oscillation • Flutter • Unforced Unsteady  
• Forced Oscillation

• Flutter

AePW-2 Analysis Cases



Applying the Lessons Learned; Formulating AePW-2
• One configuration only

• Benchmarking case: including a case that we have confidence can be 
“well-predicted” 

• Comparison metrics:
• Unsteady quantities for all cases

• Integrated sectional forces and moments

• Critical damping ratios and frequencies

• Extended statistics:  mean, std, mode, max, min

• Time histories from solutions requested because
• nothing is steady

• single person, single method of post-processing matters

• there’s always more to see- nonlinearities, off-nominal frequency content

• Results requested at more finely spaced points than experimental data

• Common grids suggested for analyses

• Various fidelity aerodynamic contributions encouraged

• Discussion telecons for analysis teams 

20
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• Grids (optional to use 
provided grids, but 
recommended)

• Geometry

• Simple finite element model
• Plunge Mode
• Pitch Mode
• Governed by mount 

system stiffness & rigid 
wing mass properties

• Tuned to experimental data
• Grid-interpolated mode shapes

Computational Information Provided



Applying the Lessons Learned; Formulating AePW-2
• One configuration only

• Benchmarking case: including a case that we have confidence can be “well-predicted” 

• Comparison metrics:
• Unsteady quantities for all cases

• Integrated sectional forces and moments

• Critical damping ratios and frequencies

• Extended statistics:  mean, std, mode, max, min

• Time histories from solutions requested because
• nothing is steady

• single person, single method of post-processing matters

• there’s always more to see- nonlinearities, off-nominal frequency content

• Results requested at more finely spaced points than experimental data

• Common grids suggested for analyses

• Various fidelity aerodynamic contributions encouraged

• Discussion telecons for analysis teams  Communication 
helps leverage the experiences and processes of others

22



Aeroelastic Prediction Workshop Schedule

Key Dates: 
• Computational Team Telecons:  1st Thursday of every calendar month 11 a.m. EST 
• Deadline for Commitment to contribute analyses: Oct 1, 2015
• Computational Results Submitted by Nov 15, 2015
• Workshop: SciTech 2016:  Jan 2-3, 2016
• SciTech Panel Discussion of Workshop:  Jan 2016 at SciTech
• 2016 AIAA Aviation Conference Abstract Deadline ~ Nov 1, 2016  
• 2017 AIAA SciTech Conference Abstract Deadline ~ June 1, 2016

2016 Aviation Conference Manuscript 
Deadline:  10 May 2016



Envisioned Workshop Process for Analysis Teams 
(May Telecon Discussion, 2015)

• Perform analyses

• Submit results 

• Prepare informal presentations for workshop

• SciTech 2016
• AePW-2

• Present results
• Results comparisons
• Discussion of results
• Path forward

• Panel discussion

• Re-analyze

• Publish at special sessions of conferences (Aviation Conference Special 
Session Scheduled)

• Publish combined journal articles

24



Agenda, Saturday

Time Title Presenter
Organization, 

Affiliation Team members

1500-1530 Welcome, overview, logistics, agenda Jennifer Heeg NASA

1530-1600 Fluid-structure coupling methods Mats Dalenbring FOI Adam Jirasek, FOI

1630-1700 Turbulence modeling effects Yuval Levy Israeli CFD Center
Daniella Raveh, 

Technion IIT

1700-1720 Temporal effects Jennifer Heeg NASA

1720-1740 Linear Analyses Guilherme Begnini Embraer Bimo Pranata, NLR

1740-1800
Data Comparisons Overview:Open discussion of data 

comparisons Jennifer Heeg NASA



Additional Information



BSCW Test Configurations

Pitch Axis:

Forced Oscillation, 

(OTT Test):

Pitching motion 

about 30% chord

Flutter, (PAPA Test):

Pitching motion 

about 50% chord

Unsteady Pressure 

Measurements:

• 1 chord fully-populated at 

60% span for both tests

• Outboard chord at 95% 

span populated for the 

PAPA test only (not for 

forced oscillation cases)

Model planform.  Dimensions are in inches.

Transition Strip:      

7.5% chord

Cross-section at 60% span, showing the layout of

the unsteady pressures.

x̂

ŷ 32”

16”

Pitch axis, forced 
oscillations

Pitch axis, flutter 
cases

Airfoil section is SC(2)-0414



Analysis Parameters



Case 1 Case 2 Optional Case 3
A B C

Mach 0.7 0.74 0.85 .85 .85

Angle of 
attack

3 0 5 5 5

Dynamic
Data Type

Forced 
oscillation

Flutter Unforced 
Unsteady  

Forced Oscillation Flutter

Notes: • Attached flow 
solution. 

• Oscillating 
Turn Table 
(OTT) exp
data.

• Unknown flow 
state.

• Pitch and 
Plunge 
Apparatus 
(PAPA) exp
data. 

• Separated flow 
effects.

• Oscillating Turn 
Table (OTT)
experimental 
data.

• Separated flow 
effects.

• Oscillating Turn 
Table (OTT)
experimental 
data.

• Separated flow 
effects on 
aeroelastic 
solution.

• No experimental 
data for 
comparison.

AePW-2 Analysis Cases



Turbulence Models Employed

Name Spalart-Allmaras Menter k-w 2-eqn
Explicit Algebraic 
Stress k-w 2-eqn

Turbulent Non-
turbulent

Hybrid 
RANS/LES 

Abbreviation SA SST EARSM TNT DDES

Analyst Designations 
Grouped SA k-w/SST k-w EARSM TNT SA-DDES

SST
W&J EARSM + std k-

w X_LES

SST Menter EARSM DDES

k-w

SST k-w


