2nd AIAA Aeroelastic

Prediction Workshop

Welcome & Overview

Jennifer Heeg NASA Langley Research Center January 2, 2016

Acknowledgements

- Megan Scheidt, AIAA, organizing and coordinating
- Joe Slater, Bruce Willis, Dale Pitt, Structural Dynamics TC, sponsorship, coordination, general support
- Organizing committee for doing preliminary analysis and preparations.
 - Pawel Chwalowski, NASA
 - Adam Jirasek, FOI
 - Daniella Raveh, Technion
 - Mats Dalenbring, FOI
 - Alessandro Scott, Pilatus
 - Jennifer Heeg, NASA
- Analysis team leaders and members
- Code development teams whose work we have utilized in performing these analyses

Adam Jirasek and Mats Dalenbring (FOI)
Jan Navratil (Brno University of Technology, VUT, Czech Republic)
Yannick Hoarau and CK. Huang (ICUBE, Strasbourg University, France)
A. Gehri and J. Vos (CFS Engineering, Lausanne, Switzerland)
Eric Blades (ATA Engineering)
Tomer Rokita (Aerodynamics department, RD&E Division, RAFAEL)
Balasubramanyam Sasanapuri and Krishna Zore (ANSYS India)
Robin Steed (ANSYS Canada)
Eric Bish (ANSYS Inc.)
Marcello Righi (Zurich University of Applied Sciences)
Daniella E. Raveh (Technion IIT)
Yuval Levy and Yair Mor Yossef (Israeli CFD Center)
Guilherme Begnini
Cleber Spode
Aluísio V. Pantaleão
Bruno Guaraldo Neto,
Guilherme O. Marcório,
Marcos H.J. Pedras
Carlos Alberto Bones
(Embraer)
Pawel Chwalowski and Jennifer Heeg (NASA Langley Research Center)
Eirikur Jonsson
Charles A. Mader
Joaquim R.R.A. Martins
(University of Michigan)
Sergio Ricci and Andrea Mannarino
(Department of Aerospace Science and Technology of Politecnico di Milano)
Patrick McGah
Girish Bhandari
Alan Mueller
Durrell Rittenberg
(CD-adapco)
Amin Fereidooni and Anant Grewal (NRC)
Marcel Grzeszczyk (NRC, University of Toronto)
Bimo Pranata and Bart Eussen (NLR)
Eduardo Molena (ITA)

AePW-2 Analysis Teams

Government

Academia

Industry

Prediction Workshop

AePW-2 Analysis Codes Utilized

Linear	RANS, Uncoupled	Euler, Coupled	RANS, Coupled	Hybrid RANS/LES
	• SU2		 CFD++ Aero EZNSS Edge FUN3D EZAir Star_CCM+ Loci/Chem Fluent CFX SUMAD ENFLOW NSMB 	 Edge FUN3D EZAir

Logistics

- Comparison Results
 - All data received by the data submittal deadline have been processed, along with format-preserving updates from those teams)
 - Data from 8 teams have been processed into the comparison data bases
 - There are 14 separate comparison data bases
- Good Ideas Capture Process
 - Discussions that we must table due to time and progress considerations
 - Noted and revisited in path forward discussion (on agenda: 1640-1700 Sunday)
- Agenda
 - Topics of common interest
 - Analysis team presentations of processes, results, lessons learned
 - Comparison data

Agenda, Saturday

			Organization,	
Time	Title	Presenter	Affiliation	Team members
1500-1530	Welcome, overview, logistics, agenda	Jennifer Heeg	NASA	
1530-1600	Fluid-structure coupling methods	Mats Dalenbring	FOI	Adam Jirasek, FOI
				Daniella Raveh,
1630-1700	Turbulence modeling effects	Yuval Levy	Israeli CFD Center	Technion IIT
1700-1720	Temporal effects	Jennifer Heeg	NASA	
1720-1740	Linear Analyses	Guilherme Begnini	Embraer	Bimo Pranata, NLR
	Data Comparisons Overview:Open discussion of data			
1740-1800	comparisons	Jennifer Heeg	NASA	

Agenda, Sunday

Time	Title	Presenter	Affiliation	Team members
0730-0800	Open discussion of data comparisons			
0800-0820	Agenda, Logistics, Data Comparison Overview	Jennifer Heeg	NASA	
0820-0840	Recap of Workshop Day 1	Cleber Spode	Embraer	
0840-0900	BSCW Geometry and Grids	Pawel Chwalowski	NASA	
0900-0920	NSMB contribution to the AePW-2	Yannick Hoarau	ICUBE, Strasbourg University, France	CK. Huang , ICUBE, Strasbourg University, A. Gehri and J. Vos , CFS Engineering, Lausanne, Switzerland
0920-0940	CFD Simulations for the 2nd Aeroelastic Prediction Workshop using EZAIR	Tomer Rokita	Aerodynamics department, RD&E Division, RAFAEL	
0940-1000	ANSYS Simulation results for the 2nd AIAA Aeroelastic Prediction Workshop	Balasubramanyam Sasanapuri	ANSYS India	Krishna Zore, ANSYS India Robin Steed, ANSYS Canada Eric Bish, ANSYS Inc.
1000-1020	Coffee Break &	Open discussion of compa	rison results	
1020-1040	Edge analysis results	Mats Dalenbring	FOI Zurich University of	Adam Jirasek , FOI Jan Navratil, Brno University of Technology, VUT, Czech Republic
1040-1100	Results obtained by ZHAW with Edge and SU2	Marcello Righi	Applied Sciences	
1100-1120	Simulations for the Second Aeroelastic Prediction Workshop Using the EZNSS Code	Daniella E. Raveh	Technion - IIT	Yuval Levy , Israeli CFD Center Yair Mor Yossef, Israeli CFD Center
1120-1140	CFD++ and Aero results	Guilherme Begnini Cleber Spode	Embraer	Aluísio V. Pantaleão Bruno Guaraldo Neto, Guilherme O. Marcório, Marcos H.J. Pedras Carlos Alberto Bones
1140-1200 January 2-3 2016	FUN3D results	Pawel Chwalowski	NASA	Jennifer Heeg

Agenda, Sunday, contd

Time	Title	Presenter	Organization, Affiliation	Team members
· ····c		resenter	Annation	
1200-1300		Lunch		
1300-1320	SUMAD Unsteady Analysis of the Benchmark SuperCritical Wing for the Aeroelastic Prediction Workshop 2	Eirikur Jonsson	University of Michigan	Charles A. Mader Joaquim R.R.A. Martins
1320-1340	Loci/Chem analysis results	Eric Blades	ATA Engineering	
1340-1400	Flutter analysis with Euler-based solver in OpenFOAM	Sergio Ricci	Department of Aerospace Science and Technology of Politecnico di Milano	Andrea Mannarino Girish Bhandari Alan Mueller
1400-1420	STAR-CCM+ Analysis Results	Patrick McGah	CD-adapco	Durrell Rittenberg
1420-1440	Aeroelastic Prediction of the BSCW using an enhanced OpenFoam-based CFD Solver	Amin Fereidooni	National Research Council Canada	Anant Grewal (NRC) Marcel Grzeszczyk (NRC, University of Toronto)
1440-1500	Comparison results walk through and discussion	Jennifer Heeg	NASA	
1500-1520	Coffee Break &	open discussion of	comparison result	S
1520-1640	Comparison Results Walk through and discussion, contd	Jennifer Heeg	NASA	
1640-1700	Path forward & good ideas recap	Pam Sparks, Jennifer Heeg	NASA	

Objectives of the Aeroelastic Prediction Workshop

- Assess the goodness of computational tools for predicting aeroelastic response, including flutter
- Understand why our tools don't always produce successful predictions
 - Which aspects of the physics are we falling short of predicting correctly?
 - What about our methods causes us to fall short of successful predictions?
- Establish uncertainty bounds for computational results
- Establish **best practices** for using tools
- Explicitly **illustrate the specific needs** for validation experimentation- i.e. why what we have isn't good enough
- Establish **community** for leveraging experiences and processes

How does validation of aeroelastic tools differ from validation of aerodynamic tools?

- Coupling with structural dynamics
- Unsteady effects matter
- Distribution of the pressures matters (integrated quantities such as lift and pitching moment often tell you little regarding aeroelastic stability)
- Phasing of the pressures relative to the displacements matters

AePW Building block approach to validation

AePW-1: Focused on unsteady fluid dynamics

AePW-2: Extend focus to coupled aeroelastic simulations

AePW-1 Configurations

 High Reynolds number Aero-Structural Dynamics Model (HIRENASD)

Benchmark Supercritical Wing (BSCW)

Rectangular Supercritical Wing (RSW)

2nd AIAA Aeroelastic Prediction Workshop

Splitter Plate

BSCW

Fairing

Applying the Lessons Learned; Formulating AePW-2

One configuration only

- Benchmarking case: including a case that we have confidence can be "well-predicted"
- Comparison metrics:
 - Unsteady quantities for all cases
 - Integrated sectional forces and moments
 - Critical damping ratios and frequencies
 - Extended statistics: mean, std, mode, max, min
- Time histories from solutions requested because
 - nothing is steady
 - single person, single method of post-processing matters
 - there's always more to see- nonlinearities, off-nominal frequency content
- Results requested at more finely spaced points than experimental data
- Common grids suggested for analyses
- Various fidelity aerodynamic contributions encouraged
- Discussion telecons for analysis teams

AePW-1 End of Workshop Summary of Benchmark Supercritical Wing (BSCW) Results

- Chosen as a challenging test case, flow-wise, but simple geometry
 - Strong shock with suspected shockinduced separated flow
- Some preliminary assessments from AePW
 - Computational methods had difficulty producing converged solutions due to flow field complexity
 - Complex flow field also observed in experimental data; Largest magnitude of dynamic behavior appears to represent shock oscillations
 - CFD solutions vary widely, even for static solution;

Likely plan of action:

- Form technical working group of BSCW analysts
- Extensive study of available experimental data; characterize different flow phenomena
- Benchmark against more benign cases- lower Mach number, lower angle of attack
- Analyze the static (unforced) problem using time-accurate evaluation methods
- Study of time convergence criteria

AePW-2 Configuration: Benchmark Supercritical Wing (BSCW)

Results from AePW-1: BSCW Mach 0.85 5°

Experimental data Bounds, ± 2 std Colored lines with open symbols:

Each analysis team shown by a separate color

0.8

• Each grid size shown by a different symbol

Critique:

- Significant variation among computational results
- Inconsistent application of sign conventions led to uncertainty in phase angle definition
- No measure of the quality of the results; No coherence data
- Mean value
 characterization of
 experimental data
 artificially smears the
 shock (cants the pressure
 distribution, makes it less
 sharp than seen in
 instantaneous snapshots)
- Spacing of experimental data may lead to underrepresenting the magnitude peak

Applying the Lessons Learned; Formulating AePW-2

- One configuration only
- Benchmarking case: including a case that we have confidence can be "well-predicted"
- Comparison metrics:
 - Unsteady quantities for all cases
 - Integrated sectional forces and moments
 - Critical damping ratios and frequencies
 - Extended statistics: mean, std, mode, max, min
- Time histories from solutions requested because
 - nothing is steady
 - single person, single method of post-processing matters
 - there's always more to see- nonlinearities, off-nominal frequency content
- Results requested at more finely spaced points than experimental data
- Common grids suggested for analyses
- Various fidelity aerodynamic contributions encouraged
- Discussion telecons for analysis teams

Shock-induced separation assessment of experimental data led to AePW-2 case selection

Shock-induced separation

- Shock-induced separation onset
- x Data unavailable

Number value Sub-critical, maximum local Mach

AePW-1 case

AePW-2 case

AePW-2 Analysis Cases

	Case 1	Case 2	Case 3
Mach	0.7	0.74	0.85
Angle of attack	3	0	5
Dynamic Data Type	Forced oscillation	• Flutter	 Unforced Unsteady Forced Oscillation Flutter

Applying the Lessons Learned; Formulating AePW-2

- One configuration only
- Benchmarking case: including a case that we have confidence can be "well-predicted"
- Comparison metrics:
 - Unsteady quantities for all cases
 - Integrated sectional forces and moments
 - Critical damping ratios and frequencies
 - Extended statistics: mean, std, mode, max, min
- Time histories from solutions requested because
 - nothing is steady
 - single person, single method of post-processing matters
 - there's always more to see- nonlinearities, off-nominal frequency content
- Results requested at more finely spaced points than experimental data
- Common grids suggested for analyses
- Various fidelity aerodynamic contributions encouraged
- Discussion telecons for analysis teams

Computational Information Provided

 Grids (optional to use provided grids, but recommended)

Geometry

Janua

• Simple finite element model

Node

PTunge Node

> Pitch Mode

- Plunge Mode
- Pitch Mode
- Governed by mount system stiffness & rigid wing mass properties
- Tuned to experimental data
- Grid-interpolated mode shapes

Applying the Lessons Learned; Formulating AePW-2

• One configuration only

• Benchmarking case: including a case that we have confidence can be "well-predicted"

• Comparison metrics:

- Unsteady quantities for all cases
- Integrated sectional forces and moments
- Critical damping ratios and frequencies
- Extended statistics: mean, std, mode, max, min
- Time histories from solutions requested because
 - nothing is steady
 - single person, single method of post-processing matters
 - there's always more to see- nonlinearities, off-nominal frequency content
- Results requested at more finely spaced points than experimental data
- Common grids suggested for analyses
- Various fidelity aerodynamic contributions encouraged
- Discussion telecons for analysis teams ←←← Communication helps leverage the experiences and processes of others

Aeroelastic Prediction Workshop Schedule

Activity	2014	2015	2016
Formulation			
Kick-off			
Analysis Telecons			Δ
Perform analyses			
AePW-2			
Re-analysis, Data processing			
Conference Sessions			

Key Dates:

- Computational Team Telecons: 1st Thursday of every calendar month 11 a.m. EST
- Deadline for Commitment to contribute analyses: Oct 1, 2015
- Computational Results Submitted by Nov 15, 2015
- Workshop: SciTech 2016: Jan 2-3, 2016
- SciTech Panel Discussion of Workshop: Jan 2016 at SciTech
- 2016 AIAA Aviation Conference Abstract Deadline ~ Nov 1, 2016 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
- 2017 AIAA SciTech Conference Abstract Deadline ~ June 1, 2016

2016 Aviation Conference Manuscript Deadline: **10 May 2016**

Envisioned Workshop Process for Analysis Teams (May Telecon Discussion, 2015)

- Perform analyses
- Submit results
- Prepare informal presentations for workshop
- SciTech 2016
 - AePW-2
 - Present results
 - Results comparisons
 - Discussion of results
 - Path forward
 - Panel discussion
- Re-analyze
- Publish at special sessions of conferences (Aviation Conference Special Session Scheduled)
- Publish combined journal articles

Agenda, Saturday

			Organization,	
Time	Title	Presenter	Affiliation	Team members
1500-1530	Welcome, overview, logistics, agenda	Jennifer Heeg	NASA	
1530-1600	Fluid-structure coupling methods	Mats Dalenbring	FOI	Adam Jirasek, FOI
				Daniella Raveh,
1630-1700	Turbulence modeling effects	Yuval Levy	Israeli CFD Center	Technion IIT
1700-1720	Temporal effects	Jennifer Heeg	NASA	
1720-1740	Linear Analyses	Guilherme Begnini	Embraer	Bimo Pranata, NLR
	Data Comparisons Overview:Open discussion of data			
1740-1800	comparisons	Jennifer Heeg	NASA	

Additional Information

BSCW Test Configurations

Analysis Parameters

Table 1. BSCW analysis input parameters for AePW-2, updated May 4, 2015.

Parameter	Symbol	Units	OTT	PAPA	OTT
			Configuration	Configuration	Configuration
Mach	М		0.7	0.74	0.85
AoA	α	deg	3°	0°	5°
Reynolds number					
(based on chord)	Re_c		4.560×10^{6}	4.450×10^{6}	4.491x10 ⁶
Reynolds number					
per unit length	Re	Re_c/ft	3.456x10 ⁶	3.338x10 ⁶	3.368x10 ⁶
Dynamic pressure	q	psf	170.965	168.800	204.197
Velocity	V	ft/s	387.332	375.700	468.983
Speed of sound	a	ft/s	553.332	506.330	552.933
Static temperature	T _{stat}	F	85.692	89.250	87.913
Density	ρ	slug/ft ³	0.00228	0.002392	0.001857
Ratio of specific heats	γ		1.113	1.136	1.116
Dynamic viscosity	μ	slug/ft-s	2.58×10^{-7}	2.69×10^{-7}	2.59×10^{-7}
Prandtl number	Pr		0.683	0.755	0.674
Test medium			R-134a	R-12	R-134a
Total pressure	Н	psf	823.17		757.31
Static pressure	p	psf	629.661		512.120
Purity	X	%	95	95	95
Ref. molecular weight					
based on 100% purity	M	g/mol	102.03	120.91	102.03
Sutherland's constant	C	R	438.07	452.13	438.07
Reference viscosity	μ_{ref}	$lb-sec/ft^2$	$2.332 \text{x} 10^{-7}$	2.330×10^{-7}	2.332×10^{-7}
Reference temperature	Tref	R	491.4	491.4	491.4

AePW-2 Analysis Cases

	Case 1	Case 2		Optional Case 3	
			А	В	С
Mach	0.7	0.74	0.85	.85	.85
Angle of attack	3	0	5	5	5
Dynamic Data Type	Forced oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	 Attached flow solution. 	 Unknown flow state. 	 Separated flow effects. 	 Separated flow effects. 	 Separated flow effects on aeroelastic solution.
	 Oscillating Turn Table (OTT) exp data. 	 Pitch and Plunge Apparatus (PAPA) exp data. 	 Oscillating Turn Table (OTT) experimental data. 	 Oscillating Turn Table (OTT) experimental data. 	 No experimental data for comparison.

Turbulence Models Employed

Name	Spalart-Allmaras	Menter k-ω 2-eqn	Explicit Algebraic Stress k-@ 2-eqn	Turbulent Non- turbulent	Hybrid RANS/LES
Abbreviation	SA	SST	EARSM	TNT	DDES
Analyst Designations					
Grouped	SA	k-@/SST	k-ω EARSM	TNT	SA-DDES
			W&J EARSM + std k-		
		SST	ω		X_LES
		SST Menter	EARSM		DDES
		k-w			
		SST k-ա			