STAR-CCM+ Analysis Results

Patrick McGah ${ }^{1}$
Girish Bhandari ${ }^{1}$
Alan Mueller ${ }^{1}$
Durrell Rittenberg ${ }^{1}$
${ }^{1}$ CD-adapco
Seattle, Washington

STAR-CCM+ Analysis v. 10.06

©. General purpose Navier-Stokes code

- Cell-centered finite volume
(4)Current analysis
- Coupled solver for mass, momentum, energy
- AUSM+ flux reconstruction
- Venkatakrishnan slope limiter
- k-w SST turbulence model (RANS)
- Pseudo-time-marching for steady flow
- Implicit scheme for unsteady flow
(2) Hemispherical domain
- 3200 in. diameter
(8) STAR-CCM+ Mesher
(4) Arbitrary polyhedral cells
- Coarse - 2.49 million cells
- Medium - 9.10 million
- Fine - 34.64 million
(8) Cell near-wall thickness

- Coarse - $\Delta \mathrm{y}=0.000042^{\prime \prime}$
- Medium - $\Delta \mathrm{y}=0.000038^{\prime \prime}$
- Fine - $\Delta \mathrm{y}=0.000032$ "'
- Cell $y+\leq 1$ in each case

Mesh - Medium Resolution Example

Mesh Near Wing

Mesh Near Trailing Edge

Mesh - Medium Resolution

Star-ccm+

Surface Mesh on Wing

- Mid-chord stream-wise $\Delta x \approx 0.12$ "
- Leading edge stream-wise $\Delta x \approx 0.05$ "
- Trailing edge stream-wise $\Delta x \approx 0.02$ "

Solution Strategy - Case 1 Steady

(8) Initialization:

- Inviscid flow solution (velocity, pressure, temperature)
- Multigrid solution - 10 levels
- 2 orders of magnitude (relative) drop in residuals
(1) Full Solution:
- Additional 5 orders of magnitude (relative) drop in residuals
- Algebraic Multigrid solution of matrix equations

Case 1 Steady Results

C ${ }_{p}$ @ 60\% Span

Red - Coarse
Blue - Medium Cyan - Fine

Case 1 Steady - Mesh Convergence

Total C_{D} and Total C_{L} vs. $\mathrm{N}^{-1 / 3}$

- From Medium to Fine Grid:
- Less than 2\% change CD
- Less than 0.5% change CL

Mach No. @ Medium Resolution Mesh

0.00

Mach No. @ Medium Resolution Mesh
(8) Medium Mesh Spatial Resolution
(8) Refinement in Δt

- 1.0 ms (100 steps per period)
- 0.5 ms (200 steps per period)
- 0.25 ms (400 steps per period)
(8) 15 Sub-iterations per global time step
- About 6 orders of magnitude drop in residuals per step
(2) $2^{\text {nd }}$ Order BDF time integration
(8) Specified Rigid Body Rotation for wing
- No Mesh Deformation

Temporal Convergence Results

L

Total C_{D} Vs. time

Temporal Convergence Results

Total C_{D} vs. time

Temporal Convergence Results

Richardson
Extrapolation

Time-Averaged Total C_{D} vs. time step size
C_{D} within 0.02% of asymptotic value

FRF Results - Lower Surface @ 60\%Span

FRF Results - Lower Surface @ 60\%Span

FRF Phase

FRF Results - Upper Surface @ 60\%Span

FRF Results - Upper Surface @ 60\%Span

FRF Phase

Case 1 Steady - Visualization

Pressure Coef. @ Medium Resolution Mesh

