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The Benchmark Super-Critical Wing

– Tested in the NASA-

TDT facility

– The NASA pitch and 

plunging apparatus 

(PAPA) was used for 

the aeroelastic test

– A linear structural FE 

model was provided 

by NASA (AePW) with 

frequencies matched 

to WT modal data: 

5.20 Hz (pitching) and 

3.33 Hz (plunging)
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The Transonic Region M∞< 1

• Shocks and possibly separated flow conditions

• The wing pressure distribution is strongly dependent on the 

angle-of-attach (AoA)

• The flutter dynamic pressure sensitive to flow conditions

• Non-Linear Aerodynamics > CFD based methods are

needed

M∞=0.85
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• Monolithic approach

• Staggered approach

 Different spatial and 

temporal requirement

 CFD and FEM

Computational Fluid-Structure Interaction
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Mesh Motion vs. Mesh Deformation

7

Wing is considered rigid

– Only two degrees-of-freedom motion  

(pitch and plunge)

– CFD mesh can be therefore considered 

as rigid and instead of deforming, it can 

be moved (mesh motion only)

• The pitch and plunge motion are 

determined using the modal coordinates

• Time saving by avoiding mesh deformation

– The airfoil will keep its original shape 

but the linearity assumption on the 

CFD side is not valid any more

Linear deformation

Non-linear deformation
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Time Synchronization

Time synchronization (coupling) 

 On sub-iteration level – “strongly coupled scheme” (Farhat et. al…)

 Every time step – weak coupling

• Do not have any special treatment of the boundary conditions due to 

coupling, the scheme is therefore of the first order in time

8

Weak coupling Strong coupling
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Edge – a CFD code for unstructured grids

• Independent in-house code, developed since 

1997 at FOI (and former FFA)

• State-of-art flow solver for the compressible 

Euler and Navier-Stokes equations

• Steady-state and time dependent solutions on 

unstructured grids

• Fully parallel, scalable, no size limit. High 

efficiency

• Developed in collaboration with selected 

external partners. Used also in teaching and 

for research at different universities

• Saab Aerosystems main CFD tool
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The CFD Mesh 
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• CFD mesh made according to 

the meshing guide from AePW-I

– The mesh used here is a medium, 

size unstructured mesh having 

about ~13 mil points



2nd AIAA Aeroelastic Prediction Workshop, 

2-3 January 2016, San Diego, USA  

Mach 0.74, a = 0º
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• Subsonic inflow 

conditions

• Flutter case
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– On sub-iteration level – strongly coupled scheme

– Nominal time step is Dt = 0.002 seconds

– Number of sub-iterations

• From about 20 sub-iterations the result is becoming 

independent, we have used 30 for this time step.

• Reduction in residuals approximately 2.5 orders of 

magnitude

• For other time step the number of inner iterations set so 

that the reduction in residual is around 2.5 orders of 

magnitude

Time Step Study – Strong Coupling
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Time Step Study – Strong Coupling

• Damping 

coefficient 

for pitching 

and 

plunging 

mode

• The two 

damping 

coefficients 

are in the 

same order

13
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Time Step Study – Weak Coupling

14

• Damping 

coefficient for 

pitching and 

plunging mode

• The time step and 

reduction of 

residuals in each 

time step is the 

same as the in the 

strong coupled 

scheme simulation

• The two modes 

have equal 

damping
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Strong vs. Weak Coupling Time Steps

15

• Strong coupled 

scheme shows a 

much smaller 

dependency of 

the result on 

time step

• Weak coupled 

scheme does 

not have unique 

solution
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Weakening the Strongly Coupled Scheme

16

In the following the possibility to reduce the 

number of time synchronizations each time step 

is investigated?

– Reduced computational time, in particularly due to 

the reduced time spent on mesh deformation

– The starting nominal strongly coupled scheme uses 

• 30 sub-iterations

• and 30 time synchronization each physical time 

step (every sub-iteration)
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• Above five 

exchanges per 

time step the 

results start to be 

independent of the 

number

• This is similarity to 

static aeroelasticity  

where common 

practice is to 

perform five loops 

to get converged 

solution

Weakening the Strongly Coupled Scheme
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Damping Comparison on Initial Pulse 

18

• The wing is 

released from 

the rigid “jig” 

shape

• Initial pulse  

with the first 

step prescribed 

as a 0.1 m 

plunge and 1°

pitch
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Estimated Flutter Dynamic Pressure

19

Three different dynamic pressures calculated

– The estimated CFD flutter dynamic pressure is 7700 Pa

– WT flutter dynamic pressure is estimated at 8082 Pa

– With WT measured flutter frequency at 4.3 Hz and for CFD 4.26 Hz

Flutter q (WT) 

Flutter q (CFD) 
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Modal Coordinates at Flutter Dynamic Pressure

20
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FRF Magnitude Comparison

21

Lower side – 60% Upper side - 60%

Lower side – 95% Upper side - 95%
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FRF Phase Comparison

22

Lower side – 60% Upper side - 60%

Lower side – 95% Upper side - 95%
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Case 3: Mach 0.85 and a = 5º
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• URANS-SA – averaged solution

Pressure on the 

surface

Mach number in the 

plane where the cp is 

collected

Vorticity colored by cp

Unsteady CFD solution
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Unsteady CFD solution

• Hyb0 – snapshot at one time step

Pressure on the 

surface

Mach number in the 

plane where the cp is 

collected

Vorticity colored by cp
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Pressure on the 

surface

Hyb0 - averaged solution

URANS – averaged solution

Vorticity colored by cp

Mach number in the 

plane where the cp is 

collected

Unsteady CFD solution
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Cp time histories in regions 1-3

27

1) Ahead of shock region x/c<0.3736 (magenta line)

2) Shock region (0.3736<x/c<0.4750) (blue line)

3) Aft shock region x/c>0.4750 (yellow line)

Experiments                       Hybrid RANS-LES                      URANS                           

Transducer # 18
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• Transonic flow

– SA model

– Do not see any large separation

Case 3: Mach 0.85 and a = 5º
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Different Dynamic Pressures

29

• Calculated 

at five 

different 

dynamic 

pressures

• The flutter 

dynamic 

pressure   

~25psf
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Pitch and plunge @ flutter pressure

30

• Damping 

coefficients 

and frequency

• Initial 3 seconds -

transient

• Pitching mode:  

z=0.00031, 

f=5.18Hz

• Plunging mode: 

z=0.00017, 

f=5.18Hz
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Weak vs. Strong Coupling

31

• Surprisingly 

not as strong 

effect as for 

case M = 0.74 

case (case 2)

– Graphs show 

data for flutter 

dynamic 

pressure
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Weak vs. Strong Coupling

Plunge                                   Pitch

• Test at Mach 0.85 and a = 0º

• Clear effect of the type of coupling used in this case
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Conclusion

• The dominant effect for this case is coupling

• There is no flow separation, the flow is linear of weakly non-linear

• Structure is linear

• Allow for larger time steps 

• Provided the time integration of coupled system is of sufficient 

accuracy (second order)

• The above conclusion does not have to be 

necessarily valid for separated flow where the 

time scale is then determined by the flow 

separation modeling

33
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For more detailes see separate AIAA paper:

A. Jirasek, M. Dalenbring and J. Navratil, 

Numertical Study of Benchmark Super-Critical 

Wing at Flutter Conditions, AIAA SciTech 2016, 

4-8 Jaunuary, San Diego, USA.


