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— Tested in the NASA- B ¥, oo
TDT facility Y A \

— The NASA pitch and
plunging apparatus
(PAPA) was used for
the aeroelastic test

— Alinear structural FE
model was provided
by NASA (AePW) with
frequencies matched
to WT modal data:
5.20 Hz (pitching) and
3.33 Hz (plunging)
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Computational Fluid-Structure Interaction
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« Monolithic approach

« Staggered approach

» Different spatial and
temporal requirement
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Computational Fluid-Structure Interaction

Computational Fluid Coupling interface ~ Computational Structural
Dynamics (CFD) , Mechanics (CSM)
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Wing is considered rigid
— Only two degrees-of-freedom motion
(pitch and plunge)

— CFD mesh can be therefore considered
as rigid and instead of deforming, it can
be moved (mesh motion only)

 The pitch and plunge motion are Non-linear deformation
determined using the modal coordinates

« Time saving by avoiding mesh deformation

— The airfoll will keep its original shape
but the linearity assumption on the
CFD side is not valid any more

Linear deformation
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Time Synchronization

Time synchronization (coupling)

» On sub-iteration level — “strongly coupled scheme” (Farhat et. al...)

» Every time step — weak coupling

« Do not have any special treatment of the boundary conditions due to
coupling, the scheme is therefore of the first order in time
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* Independent in-house code, developed since
1997 at FOI (and former FFA)

« State-of-art flow solver for the compressible
Euler and Navier-Stokes equations

» Steady-state and time dependent solutions on
unstructured grids

» Fully parallel, scalable, no size limit. High
efficiency

« Developed in collaboration with selected
external partners. Used also in teaching and
for research at different universities

« Saab Aerosystems main CFD tool
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The CFD Mesh

 CFD mesh made according to
the meshing guide from AePW-I

— The mesh used here is a medium,
size unstructured mesh having
about ~13 mil points
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Mach 0.74, o = 0°

e Subsonic inflow
conditions

* Flutter case

— 60% span
— 95% span |
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— On sub-iteration level — strongly coupled scheme
— Nominal time step is At = 0.002 seconds

— Number of sub-iterations

 From about 20 sub-iterations the result is becoming
Independent, we have used 30 for this time step.

e Reduction in residuals approximately 2.5 orders of
magnitude

* For other time step the number of inner iterations set so
that the reduction in residual is around 2.5 orders of
magnitude
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Time Step Study — Strong Coupling

. Damp|ng -0.0025 - I . | . I , :
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Time Step Study — Weak Coupling

Damping 0.000 ——————— T

coefficient for - ¢ ----0 pitching mode
pitching and 10.002
plunging mode

 The time step and
reduction of
residuals in each
time step is the -8, 0006 =
same as the in the
strong coupled
scheme simulation

The two modes
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Strong vs. Weak Coupling Time Steps

Strong coupled
scheme shows a
much smaller
dependency of
the result on
time step

Weak coupled
scheme does
not have unique
solution
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In the following the possibility to reduce the
number of time synchronizations each time step
IS Investigated?

— Reduced computational time, in particularly due to
the reduced time spent on mesh deformation

— The starting nominal strongly coupled scheme uses
» 30 sub-iterations

« and 30 time synchronization each physical time
step (every sub-iteration)
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Weakening the Strongly Coupled Scheme

« Above five 0.001 | , , ,
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Damping Comparison on Initial Pulse

 The wing is
released from
the rigid “jig”
shape

* Initial pulse
with the first
step prescribed
asai.lm
plunge and 1°
pitch
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Estimated Flutter Dynamic Pressure
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Three different dynamic pressures calculated

— The estimated CFD flutter dynamic pressure is 7700 Pa

—  WT flutter dynamic pressure is estimated at 8082 Pa

—  With WT measured flutter frequency at 4.3 Hz and for CFD 4.26 Hz
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Modal Coordinates at Flutter Dynamic Pressure




FRF Magnitude Comparison

0.30 - | - | - | - | - 0.30 . . . , . . . .

—— q=28082Pa | I — q=28082Pa
q = 7700Pa — 025+ q =7700Pa -
+--o WT data @8082Pa +--o WT data @8082Pa

0251

0.20

s, Lower side — 60%

T

020 i

; Upper side - 60%

Magnutude, (cp/9), [1/deg]
I
Magnutude, (cp/9), [1/deq]

0.15f
a
‘\
0.10- 9 £ 0.0} =
0.05f — 0.05F -
P o--0-—>-2 - - ]
i | i | : - ) ozt
0905 0.2 0.4 0.6 0.8 1 0005 1
x/c
ref
0.20 - | - | - | - | - 0.20 . . . , . . . .
—— ¢ =8082Pa | I —— ¢ =8082Pa
q =7700Pa q=7700Pa
vl o--o WT data @8082Pa 015k +--o WT data @8082Pa

Lower side — 95%

i Upper side - 95%

0.10( 0.10

Magnutude, (cp/9), [1/deg]
Magnutude, (cp/9), [1/deq]

x/c

ref

2"d AJAA Aeroelastic Prediction Workshop,
2-3 January 2016, San Diego, USA

21




22

200

FRF Phase Comparison
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Case 3: Mach 0.85 and g = 5°

A
iFol
=



Unsteady CFD solution

« URANS-SA - averaged solution

‘ Vorticity colored by c,,

Mach number in the
plane where the c, is
collected

Pressure on the _ o
surface 2"d AIAA Aeroelastic Prediction Workshop,
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Unsteady CFD solution

 HybO — snapshot at one time step

‘ Vorticity colored by c,,

Mach number in the
plane where the c, is
collected

Pressure on the _ o
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Unsteady CFD solution

plane where the c, is
collected

Pressure on the Vorticity colored by‘!c
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C, time histories in regions 1-3

CP, Upper Surface

Mw Amﬂuﬁuw wv\ Nt ?

2 = U | | \{ v | |
i \Hybrid RANS-LES URANS
0.1\\ . . . __— Transducer # 18
K <l
N
-0.1 ' ' ' '
0 0.2 04 0.6 0.8 1
x/c

1) Ahead of shock region x/c<0.3736 (magenta line)
2) Shock region (0.3736<x/c<0.4750) (blue line)
3) Aft shock region x/c>0.4750 ( )
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Case 3: Mach 0.85 and g=5°

 Transonic flow

— SA model
— Do not see any large separation

Cp
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Different Dynamic Pressures
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Pitch and plunge @ flutter pressure

« Damping
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Weak vs. Strong Coupling
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Weak vs. Strong Coupling
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« Test at Mach 0.85 and a = 0°
« Clear effect of the type of coupling used in this case
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The dominant effect for this case is coupling

* There is no flow separation, the flow is linear of weakly non-linear
« Structure is linear
« Allow for larger time steps

Provided the time integration of coupled system is of sufficient
accuracy (second order)

The above conclusion does not have to be
necessarily valid for separated flow where the
time scale Is then determined by the flow
separation modeling
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For more detailes see separate AIAA paper:

A. Jirasek, M. Dalenbring and J. Navratil,
Numertical Study of Benchmark Super-Ciritical
Wing at Flutter Conditions, AIAA SciTech 2016,

4-8 Jaunuary, San Diego, USA.
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