

Turbulence Modeling Effects

Aeroelastic Prediction Workshop 2

January 2 2016 San Diego

Yuval Levy, Yair Mor-Yossef, and Daniella Raveh Israeli CFD Center, and Technion

Outline

- Overview of turbulence model classes and models used by workshop analysts
- Overview of Reynolds stress models
- Effect of turbulence models on one of the static cases
 - Case 3A (Mach = 0.85, AOA = 5 deg, Gas: R-134a)
- Effect of turbulence models on one of the dynamic cases
 - Case 2 (Mach = 0.74, AOA = 0 deg, Gas: R-12)
- Summary and future outlook

ISCFDC Israeli CFD Center

← | →

RANS Turbulence Model Classes

• Linear eddy viscosity models (LEVM)

ISCFDC Israeli CFD Center

- Based on the Boussinesq assumption
- Involves the solution of one or more partial differential equations (could also be algebraic)
- Non-linear eddy viscosity models (NLEVM) and algebraic explicit Reynolds stress models (EARSM)
 - Based on a linear model as the background model
- Reynolds stress models (RSM, also known as secondmoment closure models)
- Hybrid RANS/LES (sometimes also known as DES)

Turbulence Models Employed

Code	Team	CFD code	Model	Class
Α	FOI	EDGE	SA	LEVM
В	Embraer	CFD++	SST	LEVM
С	NASA east	FUN3D	SA	LEVM
D	Technion	EZNSS	SA, SST, TNT	LEVM
E	UMich	SUMad	SA	LEVM
F	ZHAW	EDGE, SU2	SA, ?	LEVM, EARSM
G	ANSYS	Fluent	SA, SST	LEVM
Н	ATA	Loci	SA, SST	LEVM

Turbulence Models Employed

Code	Team	CFD code	Model	Class
	NRC	OpenFoam		
J	NLR	EDGE		
K	ITA	SU2		
L	NASA west	LAVA		
Μ	CDADAPCO	STAR-CCM+	SST	LEVM
Ν	Milano	Various	None	
0	Rafael	EZAir	TNT	LEVM
Р	Strasbourg			

Spalart Allmaras Turbulence Model

- The standard model heavily relies on calibration to a wide range of experimental data
- Has advantage over other models when applied to attached flows
- Suffers from excessive separation at junction flows and has shortcoming when simulating unsteady flows involving considerable separation
- Has many versions, each developed to address certain issues

k-ω-SST Turbulence Model

- The original version is considered the standard version
- Also has many versions
- The most popular two equation model
- Like all linear models, the main shortcomings are its difficulty to accurately predict unsteady flows involving massive separation and flows involving streamline curvature

Reynolds Stress Models

- RSM are not based on the Boussinesq assumption and therefore the assumption that the turbulent shearing stress is proportional to the rate of mean strain is dropped
- Exact transport equations for the Reynolds stresses are derived from the Navier-Stokes equation and the models are based on the solution of these equations

The production term does not require approximations

- The production term is primarily responsible for the anisotropy and the selective response of turbulence to different strain types
- RSM are becoming more affordable

RSM Varieties Considered

SSG/LRR-ω (AIAA J. 2015)

- Omega based model
- Uses a blend of two pressure-strain models, the LRR model is activated in the near wall region while the SSG model is activated further away
- MCL (AIAA J. 1999)
 - A modification for compressible flow of the Craft-Launder closure model (TCL)
 - Employs a cubic pressure-strain model
 - Topology free (no need for wall distance)

Predicted Junction Flow by the SSG/LRR-ω Model: Static Case 3A

Turbulence Model Effects on Shock Prediction: Static Case 3A

Turbulence Model Effects on Shock Prediction: Static Case 3A

ISCFDC Israeli CFD Center

Turbulence Model Effects on Shock Prediction: Static Case 3A

Turbulence Model Effects Convergence of Static Case 3A

Turbulence Model Effects Convergence of Static Case 3A

Time step

Turbulence Model Effects Flutter, Mach = 0.74, AOA = 0.0

Turbulence Model Effects Flutter, Mach = 0.74, AOA = 0.0

Λ

← | →

Summary

- Results concerning the prediction of the most challenging static case may significantly vary (case 3A, Mach = 0.85, AOA = 5)
 - All LEVM converge to a steady flow
 - SA and SGG/LRR-ω fail to predict the correct shock locations
 - SST predicts the (average?) shock location
 - MCL model fails to converge to a steady flow
 - Time accurate simulations result in shock oscillations that are similar to the experiment
- LEVM have very little effect on flutter case 2

Future Outlook

- Recent results show that adding a second nonlinear term to the linear Reynolds stress tensor — the so called quadratic constitutive relation (QCR) — may alleviate the excessive junction flow separation problem
 - SA-Edwards-QCR2000
 - SST-2003-QCR2000
- Since Reynolds stress models become more affordable, they may provide other means for accurately simulating complex, unsteady, massively separated flows
- Hybrid models?

Thank You

