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Introduction 

Why CFD for flutter prediction? 

– currently doublet-lattice aerodynamics is the standard approach, 
robust and very efficient 

– industrial applications include “correction”, see e.g. presentation of 
Embraer 

– use of CFD significantly increases (1) number of parameters, 
numerical and physical, and (2) effort: pre-, post-procs, CPU time  

Most important expected contribution of CFD 

– nonlinear dependency of flutter to flow state, e.g. transonic 
peculiarity 

– strong nonlinearity, e.g. limit-cycle-oscillation beyond flutter 
boundary 
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Models for analyses based on doublet-lattice 

structural dynamics:  
• NASTRAN FEM from 

AePW2 site 
• critical damping ratio 

ζi=0.001 [NASA TM-4457]  
 

aerodynamics 
• doublet-lattice panel 

16x12 panels 
• not too fine at leading 

edge to avoid unrealistic 
suction peak 
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Linear flutter analysis 

NASTRAN SEFLUTTR 
• pk: constant density, 

varying velocity 
• pknl: varying both 

density and velocity  
• NASA experiment: 

constant velocity, 
varying density 
 

• no-correction is 
applied 
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Comparison with experiment 

NASTRAN SEFLUTTR 
• standard pk and pknl 

predict same flutter 
dynamic pressure q 

• differences at non-zero 
damping due to 
harmonic  (k) approxi-
mation of GAF for 
complex root (p) 
 

• reasonably close to 
experiment 
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Reduced-frequency of interest 

NASTRAN SEFLUTTR 
• at flutter point the 

reduced frequency is 
about 0.05-0.07 
 

• this value is used to 
define time-step size for 
time-accurate 
computation using CFD 
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Flutter analyses involving CFD 

NLR in-house developed ENFLOW CFD  system 

– structured multiblock, cell-centred finite volume method 

– applicable for aerodynamic, aeroelastic and aero-acoustic analysis 

– k-ω TNT, EARSM and SST (Menter) turbulence models 

– implicit time integration, Δt determined by accuracy, not stability 

 

Application for flutter analysis in AePW2 

1. GAF computation based on harmonic motion for M=0.70, 0.74, 0.80, 
0.82 about zero angle-of-attack 

2. time-domain simulation with strong-coupling between CFD and 
structural model for AePW2 case 2 at M=0.74 
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Grid for analyses based on CFD 

original EZNSS CFD grid provided by Daniella Raveh of Technion, 
structured multiblock with OO topology.  
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Flow conditions 

flow is attached for all 
cases considered 
 
from weak shockwave on 
upper side at M=0.70 
 
up to moderate shock- 
waves on upper as well 
as lower side at M=0.82 
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AePW2 case 2, steady Cp 

steady flow results at M=0.74, 
=0 deg 
 
differences to experiment 
close to LE, due to fully 
turbulent assumption 
 
used as initial state for forced 
oscillation computations to 
obtain GAF 
 
also as initial state for time-
domain strongly-coupled 
simulation 
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Comparison of GAF between DL and CFD 

GAF for AePW2 case 2  
M=0.74, AOA=0 deg 
 
very similar results 
between DL and CFD 
especially at frequency 
range of interest  
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Flutter diagram DL and CFD GAF 

GAF for AePW2 case 2  
M=0.74, AOA=0 deg 
 
as expected from 
similarity of GAF,  
very similar results for 
flutter dynamic pressure 
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Time-domain FSI at exp flutter dynamic pressure 

Simulation at experimental 
dynamic pressure  
– case 2, M=0.74, q=168.8 psf, 

initial solution at =0 deg 
– no initial condition 

 
– solution is slightly unstable, 

i.e. flutter boundary is lower 
than experiment  
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Method of identification  

Simplified identification procedure: 
– detrend the data  static solution 
– apply Hilbert transform 
– log fit the envelope  damping 
– frequency obtained using zero 

crossing  
  



NLR contribution to AePW2 2016 16 

Time-domain FSI at pk flutter dynamic pressure 

Simulation at linear (pk) flutter 
dynamic pressure  
– case 2, M=0.74, q=158.6 psf, 

initial solution at =0 deg 
– modal velocity initial 

condition 
 

– solution is stable, i.e. flutter 
boundary is higher than 
linear flutter boundary 
obtained using pk-method 
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Time-domain FSI at interpolated flutter dyn pressure 

Simulation at interpolated 
flutter dynamic pressure  
– case 2, M=0.74, q=166.9 psf, 

initial solution at =0 deg 
– modal velocity initial 

condition 
 

– solution is neutrally stable, 
– dynamic pressure is closer to 

experiment than linear 
flutter boundary 
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Summary of flutter dynamic pressures 

Remarks on predicted flutter 
boundary: 
• DL results follow global 

trend but misses transonic 
peculiarity, i.e. dip and rise 

• linear pk results with CFD 
capture the dip and rise but 
about 6% different from 
experiment 

• nonlinear time domain 
result (case 2) is closer to 
experiment 
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Rise of flutter boundary at M=0.82 

M=0.80 to M=0.82 leads to significantly 
higher flutter boundary 
 
noticeable difference only in Q22 due to 
relatively strong shockwave at lower 
side; without flow separation 
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Rise of flutter boundary at M=0.82, concluded 

Simple check on Q22 contri-
bution to flutter 
• modify Q22 of M=0.82 results 

to match Q22 of M=0.80 at 
k=0 

• flutter boundary drops 
significantly 
 

 reduction of Q22 contributes 
to the rise of flutter boundary 
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AePW2 case 1 results, steady 
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AePW2 case 1 results, forced oscillation 
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AePW2 case 2 results, steady 
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Conclusions 

AePW2 case 2 represents transonic flutter problem without flow 
separation 

– DL results can only capture global trend, misses transonic dip and 
rise 

– linear flutter results with CFD GAF capture transonic flutter 
behaviour properly; however some quantitative differences 
compared to experiment: needs more parametric study, e.g. effects 
of initial state, effects of amplitude of oscillation for obtaining GAF, etc. 

– nonlinear time-domain simulation give the best result compared to 
experiment   


