BSCW AePW-2 Geometry and Grids

Pawel Chwalowski and Jennifer Heeg

NASA Langley Research Center

AePW-2

January 2-3, 2016, San Diego, CA

Outline

- BSCW Background Information
- Grids
- Assumptions
- Grid Motion
- FUN3D 8 grids study

Benchmark Supercritical Wing (BSCW)

Experimental data from 2 wind tunnel tests are being used for comparison data

TDT Test 470: Pitch And Plunge Apparatus (PAPA)

BSCW Test Configurations

Notes....

• Prior to AePW-1, we did not have CAD model of the BSCW wing.

- In 2011, CAD model and IGES files were constructed from the optically scanned data obtained 20 years ago.
- In 2011, unstructured grids for AePW-1 were constructed using VGRID software and structured grids using Gridgen software using gridding guidelines based on Drag Prediction Workshop recommendations.
- In 2014, a laser scan of the wing was conducted.
- Laser scan surface closely matched the optical scan: a small discrepancy was noted near the wing tip on the trailing edge.
- New grids were not constructed: AePW-1 grids are used in AePW-2.
- Workshop contributors are free to build their own grids.
- In 2014 a simplified FEM of the wing was built and preliminary computations completed by Organizing Committee.
- Assumptions....

Unstructured grids for AePW-1 were constructed VGRID software from NASA Langley

Ref: Chwalowski, P., Heeg J., "FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop," AIAA 2013-0785.

Ref: Chwalowski, P., Heeg J., "FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop," AIAA 2013-0785.

Benchmark Supercritical Wing (BSCW)

Ref: Chwalowski, P., Heeg J., "FUN3D Analyses in Support of the First Aeroelastic Prediction Workshop," AIAA 2013-0785.

Raveh, D. E., Yossef, Y. M., Levy, Y., "Flow Simulations for the First Aeroelastic Prediction Workshop Using the EZNSS Code," AIAA 2013-0787.

Schuster, D. M., "Aerodynamic Measurements on a Large Splitter Plate for the NASA Langley Transonic Dynamics Tunnel," NASA/TM-2001-210828.

Benchmark Supercritical Wing (BSCW) Grid Motion: wing motion vs. entire computational volume motion (forced oscillation cases)

Volume motion

Wing motion

Benchmark Supercritical Wing (BSCW) Grid Motion: wing motion vs. entire computational volume motion (forced oscillation cases)

Volume motion

Wing motion

AePW-2 Case2 FUN3D study using 8 grids

FUN3D Analysis

- Computational results obtained using the different grids being used by the AePW-2 teams, using a single code with all possible parameters identical
- Grids are from FOI, Technion, U of Michigan, DLR and NASA
- Five unstructured grids
- Three structured grids: FUN3D utility converts a PLOT3D structured grid to a hexahedral unstructured grid
- Case2: Mach 0.74, alpha = 0°, Experimental q = 169 psf
- Spalart-Allmaras turbulence model
- Results
 - Unforced steady aerodynamic coefficients
 - Convergence
 - Static aeroelastic aerodynamic coefficients and pitch angle
 - Dynamic solution: damping values

Case #2: Low Mach number Flutter Simulations

	Case 1	Case 2	Optional Case 3		
			А	В	С
Mach	0.7	0.74	0.85	0.85	0.85
Angle of attack	3	0	5	5	5
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter
Notes:	Attached flow solution	 Unknown flow state 	 Separated flow effects 	Separated flow effects	 Separated flow effects on aeroelastic solution
	 Oscillating Turn Table (OTT) exp data 	 Pitch and Plunge Apparatus (PAPA) exp data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison

FUN3D Core Capabilities

- Established as a research code in late 1980s; now supports numerous internal and external efforts across the speed range
- Solves 2D/3D steady and unsteady Euler and RANS equations on node-based mixed element grids for compressible and incompressible flows
- General dynamic mesh capability: any combination of rigid / overset / morphing grids, including 6-DOF effects
- Aeroelastic modeling using mode shapes, full FEM, etc.
- Constrained / multipoint adjoint-based design and mesh adaptation
- Distributed development team using agile/extreme software practices including 24/7 regression, performance testing
- Capabilities fully integrated, online documentation, training videos, tutorials

FUN3D Aeroelastic Capabilities

- Built upon elasticity PDE-based mesh deformation
- Built in modal structural solver, same as in CAP-TSD, CFL3D, Overflow
 - Typically uses mode shapes from NASTRAN normal modes analysis
- Coupling to external FEM/CSD codes
 - Read surface displacements obtained from FEM
 - Write aerodynamic loads (C_p , C_{fx} , C_{fy} , C_{fz}) for FEM
 - Requires CFD/CSD transfer middleware
 - Special case: rotorcraft comprehensive CSD codes, CAMRAD, DYMORE

FUN3D Mesh Deformation

• Model the mesh as a linear elastic solid governed by

$$\nabla \cdot [\mu(\nabla u + \nabla u^T) + \lambda(\nabla \cdot u)I] = f = 0$$

$$=\frac{EU}{(1+U)(1-2U)} \qquad \qquad M=\frac{E}{2(1+U)}$$

- Choose Poisson's ratio and Young's modulus to close system
 - U = const, E = E(1/V) or E(1/d)
 - Smaller cells or cells closer to surface are stiffer
- Solve linear PDE
 - Large fraction (typ. 30% or more) of cost of flow-solver step
 - Eventually will employ multigrid to speed up solution
- Geometric Conservation Law (ALE formulation) accounted for
 - Essential for free stream preservation on deforming meshes
 - Appears as a source term in flow equation residuals

AePW-2 Case2 FUN3D study using 8 grids

AePW-2 Case2 FUN3D study using 8 grids

FUN3D Analysis Process

Unforced steady Sta

state solution

Static aeroelastic solution, Forced unsteady solution with large structural damping value (0.999)

Unforced unsteady solution

Dynamic aeroelastic solution, Forced unsteady solution with small structural damping value (0.0) and initial generalized Vel.

AePW-2 Case2 FUN3D study using 8 grids

Grid #	# nodes	Resolution
1	1758933	Coarse
2	2813725	Coarse
3	22368889	Fine
4	1375511	Coarse
5	13744305	Medium
6	2968550	Coarse
7	9005346	Medium
8	26786862	Fine

Unforced Steady Solution

Unforced Steady Solution

Convergence Rates: Unforced Steady

Convergence Rates

Unforced Steady and Static Aeroelastic Aerodynamic Coefficients

Dynamic Aeroelastic Results Case 2: Mach 0.74, alpha = 0°, Experimental q = 169 psf

Results from this study will be added to the AePW-2 database