Plans & Example Results for the 2nd AIAA Aeroelastic Prediction Workshop

https://AePW2.larc.nasa.gov

Jennifer Heeg, Pawel Chwalowski

NASA Langley Research Center

Dave Schuster NASA Engineering & Safety Center

Daniella Raveh Technion – Israel Institute of Technology

Adam Jirasek, Mats Dalenbring

Swedish Defense Research Agency, FOI

AIAA SciTech, January 2015, Kissimee FL

AePW-2 Website:

AePW-2 KickOff Meeting

<u>Tonight</u>: Monday, January 5th, 2015 1900-2100 hrs

Room: Emerald 4

Agenda

- Open discussion and comments
- Plans for AePW-2
- Locating what you need to participate in AePW-2
- Website tour & Walkthrough of aspects
- Preliminary results from 3 analysis teams already working towards AePW-2
- Comparison of current results (with Experimental data; with AePW-1 results where appropriate)
- Relevant lessons from AePW-1, including examination through the data
- Re-analyses after AePW-1; Things that we're learned
- Q&A
- Future directions presentations and discussions

- Aeroelastic Prediction
- AePW-2 Plans
- Example Results from OC members
- Concluding Remarks

The most popular questions asked about AePW

How is this different from aerodynamic validation?

What are you trying to do?

> Why should I care? Why should I participate?

What are you trying to do?

- Assess the goodness of computational tools for predicting aeroelastic response, including flutter
- Understand why our tools don't always produce successful predictions
 - Which aspects of the physics are we falling short of predicting correctly?
 - What about our methods causes us to fall short of successful predictions?
- Establish uncertainty bounds for computational results
- Establish best practices for using tools
- Explicitly **illustrate the specific needs** for validation experimentation- i.e. why what we have isn't good enough

Aeroelastic computational benchmarking

Technical Challenge:

Assess state-of-the-art methods & tools for the prediction and assessment of aeroelastic phenomena

Fundamental hindrances to this challenge

- No comprehensive aeroelastic benchmarking validation standard exists
- No sustained, successful effort to coordinate validation efforts

Approach

- Perform comparative computational studies on selected test cases
- Identify errors & uncertainties in computational aeroelastic methods
- Identify gaps in existing aeroelastic databases

AePW building block approach to validation

Utilizing the classical considerations in aeroelasticity

- Fluid dynamics
- Structural dynamics
- Fluid/structure coupling

AePW-1: Focused on Unsteady fluid dynamics

AePW-2: Extend focus to coupled aeroelastic simulations

How does validation of aeroelastic tools differ from validation of aerodynamic tools?

- Obvious (?) differences:
 - Coupling with structural dynamics
 - Unsteady effects matter
- More subtle differences:
 - Distribution of the pressures matters (integrated quantities such as lift and pitching moment tell you little regarding aeroelastic stability)
 - Phasings of the pressures relative to the displacements matter

Why should our organization participate? What do we get out of participating?

- Evaluation of your own methodologies and/or abilities to apply computational tools
- Experience of others brought to bear on examining your results in a critical thinking environment
- Inclusion of your results in determining best practices, uncertainty levels in predictions
- Identification of
 - Areas where your tools meet your required level of predictive and analytical capabilities
 - Benefits to be gained by added analytical complexity
 - Areas where you want to further refine your capabilities
- Detailed supporting information for
 - Advocacy within your organization
 - Advocacy to your customers
- Leveraging the work of others

- Aeroelastic Prediction
- AePW-2 Plans
- Example Results from OC members
- Concluding Remarks

AePW-1: Applying the Lessons Learned

- One configuration only
- Benchmarking case: including a case that we have confidence can be "well-predicted"
- Comparison metrics:
 - Unsteady quantities for all cases
 - Integrated sectional forces and moments
 - Critical damping ratios and frequencies
 - Extended statistics: mean, std, mode, max, min
- Time histories from solutions requested because
 - nothing is steady
 - single person, single method of post-processing matters
 - there's always more to see- nonlinearities, off-nominal frequency content
- Results requested at more finely spaced points than experimental data
- Common grids suggested for analyses
- Various fidelity aerodynamic contributions encouraged
- Discussion telecons for analysis teams

Benchmark Supercritical Wing (BSCW)

BSCW test configurations

Shock-induced separation assessment leads to AePW-2 case selection

Mach	0.6	0.	7	0.8			0.85	0.	87
α^0 (psf)	170	100	170	100	170	200	200	100	170
-1							1.27	1.28	1.28
0							1.28	Х	
1				1.21	1.21	1.22			
3		1.20	1.21	1.29	0	0			
5	1.07	1.29	0						

AePW-1 case

AePW-2 case

You are invited to participate in AePW-2

Extend focus to coupled aeroelastic simulations

	Case 1 Case 2		Optional Case 3			
			А	В	С	
Mach	0.7	0.74	0.85	0.85	0.85	
Angle of attack	3	0	5	5	5	
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter	
Notes:	Attached flow solution	Unknown flow state	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution 	
	 Oscillating Turn Table (OTT) exp data 	 Pitch and Plunge Apparatus (PAPA) exp data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison 	

Mount systems

Oscillating TurnTable (OTT) for Forced Oscillation Cases

(PAPA) exp

data.

experimenta

data.

data.

data for

comparison.

Pitch And Plunge Apparatus (PAPA) for Flutter Cases

Case 1 0.7 3		Case 2 0.74		A	Optional Case 3 B	c
0.7 3		0.74		A	В	с
0.7 3		0.74				
3				0.85	.85	.85
		0		5	5	5
Forced oscillation		Flutter		Unforced Unsteady	Forced Oscillation	Flutter
Attached flow solution.	•	Unknown flow state.		 Separated flow effects. 	 Separated flow effects. 	 Separated flow effects on aeroelastic solution.
Oscillating Turn Table (OTT) exp data.	·	Pitch and Plunge Apparatus (PAPA) exp data.		Oscillating Turn Table (OTT) experimental data.	 Oscillating Turn Table (OTT) experimental data. 	No experimental data for comparison.
	Forced oscillation Attached flow solution. Oscillating furn Table (OTT) exp data.	Forced oscillation Attached flow solution. Dscillating furn Table (OTT) exp data.	Forced oscillation Attached flow iolution. Dscillating furn Table OTTJ exp data. Force Unknown flow state. Pitch and Plunge Apparatus (PAPA) exp data.	Forced oscillation Attached flow iolution. Dscillating furn Table OTT) exp data. Hutter Unknown flow state. Plutch and Plunge Apparatus (PAPA) exp data.	Forced oscillation Flutter Unforced Unsteady Attached flow isolution. • Unknown flow state. • Separated flow effects. Dscillating furn Table OTTJ exp data. • Pitch and Plunge (PAPA) exp data. • Oscillating Turn Table (OTT) experimental data.	Forced oscillation Flutter Unforced Unsteady Forced Oscillation Attached flow isolution. • Unknown flow state. • Separated flow effects. • Separated flow effects. Dscillating furn Table OTT) exp data. • Pitch and Plunge (PAPA) exp data. • Oscillating Turn Table (OTT) experimental data. • Oscillating turn Table (OTT)

Computational information provided

Overview of requested submittal data sets

- Steady rigid pressure coefficient distributions: statistics of the results
- Time histories
 - Angle of attack
 - Leading and trailing edge displacements
 - Pressure coefficients
 - Lift & pitching moment coefficients
 - Sectional lift & pitching moment coefficients
- Frequency response functions: C_p/θ
 - At forced oscillation or flutter frequency
 - Across 0-100 Hz
- Static aeroelastic pressure coefficient distributions: statistics of the results
- Flutter bounds

- Aeroelastic Prediction
- AePW-2 Plans
- Example Results from OC members
- Concluding Remarks

Case #1: Attached flow Forced Oscillation case

Case 1		Case 2		Optional Case 3				
			А	В	С			
Mach	0.7	0.74	0.85	0.85	0.85			
Angle of attack	3	0	5	5	5			
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter			
Notes:	Attached flow solution	 Unknown flow state 	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution 			
	 Oscillating Turn Table (OTT) exp data 	 Pitch and Plunge Apparatus (PAPA) exp data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison 			

Steady rigid pressure distributions

Example Results for Case #1 Mean values of Cp

These computational results agree much better with the experimental data than the case for AePW-1 (Case #3 for AePW-2)

Static pressure comparisons are a relatively easy and almost-for-free comparison enroute to the unsteady results comparisons

Results from 3 separate analysis codes are shown here. (Reynolds Averaged Navier Stokes simulations with Spalart-Allmaras turbulence models)

ARISON WITH

Forced Oscillation data and results are requested at the following locations & conditions

Forced Oscillation Con

FRFs at excitation frequency Experimental comparison d 0 FRFs as functions of chord \circ Time history data Angle of attack 0 Leading and trailing edge di 0 Pressure coefficients \bigcirc Lift & pitching moment coeff 0 Sectional lift & pitching mon 0 At experiment dynamic pressure FRFs fr **Span Station** 60% 95% Surface 23

Case #1 Frequency Response Functions for Forced Oscillation C_p / α

- Forced oscillation at 10 Hz
- FRFs shown at 10 Hz, as functions of chord
- Shown here only for the experimental data
- Experimental data available only at 60% span

Case #2: Low Mach number Flutter Simulations

Extend focus to coupled aeroelastic simulations

RHERING HUDER HAN ARRENT TAKEN

	Case 1 Case 2		Optional Case 3			
			А	В	С	
Mach	0.7	0.74	0.85	0.85	0.85	
Angle of attack	3	0	5	5	5	
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter	
Notes:	Attached flow solution	 Unknown flow state 	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution 	
	 Oscillating Turn Table (OTT) exp data 	 Pitch and Plunge Apparatus (PAPA) exp data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison 	

Flutter simulation data and results are requested at the following locations & conditions

Flutter Simulation (

FRFs at flutter frequency: **Experimental compariso** 0 FRFs as functions of ch \bigcirc Time history data Angle of attack 0 Leading and trailing edg 0 Pressure coefficients \bigcirc Lift & pitching moment c 0 Sectional lift & pitching r 0 FRFs from 0-100 Hz Dynamic Flutter q, Comp pressure Static aero Flutter q, Exp distributio **Span Station** 60% 95% Flutter info Surface Damp 0 Flutter dynamic -0 Damping & frequency at any other 0

Example results for Case #2 Mean values of Cp at 60% Span Station Upper Surface

Results from 3 separate analysis codes are shown here.

(Reynolds Averaged Navier Stokes simulations with Spalart-Allmaras turbulence models)

Small perturbations on the angle of attack and Mach number were investigated. These perturbations are not part of the AePW-2 case matrix.

DIRECT COMPARISON WITH EXPERIMENTAL DATA

- These example results were calculated using
 - URANS + SA
 - o Medium fidelity grid
 - o Relatively coarse time step
 - 168.8 psf, the experimental flutter dynamic pressure
 - The growing displacements and angles show that this solution predicts that flutter onset occurs at a lower dynamic pressure.
 - The twist angle time history wasanalyzed to produce the dampingand frequency results

This data is requested

- At the experimental flutter dynamic pressure
- At the computational flutter dynamic pressure
- At 95% span only (The wing itself is rigid, so span station will not matter)

Optional analysis case: Mach 0.85

- Repeat of AePW-1 test case, in part
- Investigate unsteady separated flow modeling
- Utilize time-accurate methodology for unforced "steady" solution
- Utilize higher fidelity modeling and/or different turbulence modes
- Investigate solution convergence, especially temporal convergence

	Case 1 Case 2		Optional Case 3			
			А	В	С	
Mach	0.7	0.74	0.85	0.85	0.85	
Angle of attack	3	0	5	5	5	
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter	
Notes:	Attached flow solution	Unknown flow state	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution 	
	 Oscillating Turn Table (OTT) exp data 	 Pitch and Plunge Apparatus (PAPA) exp data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison 	

A glance of all of the cases: Rigid unforced system data

				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	Case 1 Case 2		Optional Case 3			
			А	В	С	
Mach	0.7	0.74	0.85	0.85	0.85	
Angle of attack	3	0	5	5	5	
Dynamic Data Type	Forced Oscillation	Flutter	Unforced Unsteady	Forced Oscillation	Flutter	
Notes:	 Attached flow solution 	 Unknown flow state 	 Separated flow effects 	 Separated flow effects 	 Separated flow effects on aeroelastic solution 	
	 Oscillating Turn Table (OTT) exp data 	 Pitch and Plunge Apparatus (PAPA) exp data 	 Oscillating Turn Table (OTT) experimental data 	 Oscillating Turn Table (OTT) experimental data 	 No experimental data for comparison 	

Steady rigid pressure distributions

Case comparisons 60% span,

For the primary forced oscillation case, Case #1, disagreements with experimental data limited to the peak of the upper surface shock.

For the primary flutter case, Case #2, shows a well-matched rigid pressure distribution without much variation among the computational results.

The complexity of the Case #3 is indicated by the variation among the computational results & difference from the experimental data \rightarrow Shock location, shock strength, aft loading especially on lower surface.

- Aeroelastic Prediction
- AePW-2 Plans
- Example Results from OC members
- Concluding Remarks

We invite you to participate

Participation is unrestricted

Important Dates

- Kickoff Meeting: SciTech 2015
- Workshop: SciTech 2016
- Computational Results Submitted by Nov 15, 2015
- Computational Team Telecons: 1st Thursday of every calendar month 11 a.m. EST

AePW-2 KickOff Meeting

<u>Tonight</u>: Monday, January 5th, 2015 1900-2100 hrs

Room: Emerald 4

Agenda

- Open discussion and comments
- Plans for AePW-2
- Locating what you need to participate in AePW-2
- Website tour & Walkthrough of aspects
- Preliminary results from 3 analysis teams already working towards AePW-2
- Comparison of current results (with Experimental data; with AePW-1 results where appropriate)
- Relevant lessons from AePW-1, including examination through the data
- Re-analyses after AePW-1; Things that we're learned
- Q&A
- Future directions presentations and discussions

https://AePW2.larc.nasa.gov AePW-2 Website: Thank you & We look forward to working with you

The Aeroelastic Prediction Workshop is sponsored by the AIAA Structural Dynamics Technical Committee