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AePW-2 KickOff Meeting

• Tonight:  Monday, January 5th, 2015

• 1900-2100 hrs

• Room: Emerald 4

Agenda

• Open discussion and comments

• Plans for AePW-2

• Locating what you need to participate in AePW-2

• Website tour & Walkthrough of aspects

• Preliminary results from 3 analysis teams already working towards AePW-2

• Comparison of current results (with Experimental data; with AePW-1 results where 
appropriate)

• Relevant lessons from AePW-1, including examination through the data

• Re-analyses after AePW-1; Things that we’re learned

• Q&A

• Future directions presentations and discussions
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• Aeroelastic Prediction

• AePW-2 Plans

• Example Results from OC members

• Concluding Remarks
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Outline



The most popular questions 

asked about AePW
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What are 
you trying 
to do?How is this 

different 
from 
aerodynamic 
validation? Why should 

I care? Why 
should I 
participate?
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What are 
you trying 
to do?

• Assess the goodness of computational tools for predicting 

aeroelastic response, including flutter

• Understand why our tools don’t always produce successful 

predictions 

– Which aspects of the physics are we falling short of predicting 

correctly?  

– What about our methods causes us to fall short of successful 

predictions?

• Establish uncertainty bounds for computational results

• Establish best practices for using tools

• Explicitly illustrate the specific needs for validation 

experimentation- i.e. why what we have isn’t good enough



 Technical Challenge:  

Assess state-of-the-art methods & tools for the prediction and assessment

of aeroelastic phenomena

 Fundamental hindrances to this challenge
 No comprehensive aeroelastic benchmarking validation standard exists

 No sustained, successful effort to coordinate validation efforts

 Approach
 Perform comparative computational studies on selected test cases

 Identify errors & uncertainties in computational aeroelastic methods

 Identify gaps in existing aeroelastic databases

Aeroelastic computational benchmarking



AePW building block approach to validation

Utilizing the classical considerations in 
aeroelasticity

• Fluid dynamics

• Structural dynamics

• Fluid/structure coupling

AePW-1:  Focused on Unsteady fluid dynamics

AePW-2:  Extend focus to coupled aeroelastic simulations
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How does validation of 
aeroelastic tools differ 
from validation of 
aerodynamic tools?

• Obvious (?) differences:

– Coupling with structural dynamics

– Unsteady effects matter

• More subtle differences:

– Distribution of the pressures matters (integrated 

quantities such as lift and pitching moment tell you 

little regarding aeroelastic stability)

– Phasings of the pressures relative to the 

displacements matter
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Why should our organization 
participate? What do we get out 
of participating?

• Evaluation of your own methodologies and/or abilities to apply 

computational tools

• Experience of others brought to bear on examining your results 

in a critical thinking environment

• Inclusion of your results in determining best practices, 

uncertainty levels in predictions

• Identification of 

– Areas where your tools meet your required level of predictive and 

analytical capabilities

– Benefits to be gained by added analytical complexity

– Areas where you want to further refine your capabilities

• Detailed supporting information for

– Advocacy within your organization 

– Advocacy to your customers

• Leveraging the work of others



• Aeroelastic Prediction

• AePW-2 Plans
• Example Results from OC members

• Concluding Remarks
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Please see the paper for discussion of lessons learned 
and how we applied them to this workshop formulation.  
For more in-depth discussion, please see “Overview and 
lessons learned from the Aeroelastic Prediction 
Workshop,” IFASD-2013-1A, June 2013



AePW-1:  Applying the Lessons Learned

• One configuration only

• Benchmarking case: including a case that we have confidence can be 

“well-predicted” 

• Comparison metrics:

– Unsteady quantities for all cases

– Integrated sectional forces and moments

– Critical damping ratios and frequencies

– Extended statistics:  mean, std, mode, max, min

• Time histories from solutions requested because

– nothing is steady

– single person, single method of post-processing matters

– there’s always more to see- nonlinearities, off-nominal frequency content

• Results requested at more finely spaced points than experimental data

• Common grids suggested for analyses

• Various fidelity aerodynamic contributions encouraged

• Discussion telecons for analysis teams 
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Benchmark Supercritical Wing (BSCW)
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BSCW test configurations

Pitch Axis:

Forced Oscillation, 

(OTT Test):

Pitching motion 

about 30% chord

Flutter, (PAPA Test):

Pitching motion 

about 50% chord

Unsteady Pressure 

Measurements:

• 1 chord fully-populated at 

60% span for both tests

• Outboard chord at 95% 

span populated for the 

PAPA test only (not for 

forced oscillation cases)

Model planform.  Dimensions are in inches.

Transition Strip:      

7.5% chord

Cross-section at 60% span, showing the layout of

the unsteady pressures.

x̂

ŷ 32”

16”

Pitch axis, forced 
oscillations

Pitch axis, flutter 
cases

Airfoil section is SC(2)-0414



Shock-induced separation assessment 

leads to AePW-2 case selection
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You are invited to participate in AePW-2

Case 1 Case 2 Optional Case 3

A B C

Mach 0.7 0.74 0.85 0.85 0.85

Angle of 
attack

3 0 5 5 5

Dynamic
Data Type

Forced 
Oscillation

Flutter Unforced 
Unsteady  

Forced Oscillation Flutter

Notes: • Attached flow 
solution

• Oscillating 
Turn Table 
(OTT) exp
data

• Unknown flow 
state

• Pitch and 
Plunge 
Apparatus 
(PAPA) exp
data 

• Separated flow 
effects

• Oscillating 
Turn Table 
(OTT)
experimental 
data

• Separated flow 
effects

• Oscillating Turn 
Table (OTT)
experimental 
data

• Separated flow 
effects on 
aeroelastic 
solution

• No 
experimental 
data for 
comparison

Extend focus to coupled aeroelastic simulations



Mount systems
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Pitch And Plunge Apparatus (PAPA)
for Flutter Cases

Oscillating TurnTable (OTT) 
for Forced Oscillation Cases



Computational information provided
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• Grids (optional to 
use provided 
grids, but 
recommended)

• Geometry

• Simple finite 
element model

• Tuned to 
experimental 
data

• Grid-interpolated 
mode shapes



Overview of requested submittal data sets
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• Steady rigid pressure coefficient distributions:  

statistics of the results

• Time histories 

o Angle of attack

o Leading and trailing edge displacements

o Pressure coefficients

o Lift & pitching moment coefficients

o Sectional lift & pitching moment coefficients

• Frequency response functions: Cp/q

o At forced oscillation or flutter frequency

o Across 0-100 Hz

• Static aeroelastic pressure coefficient 

distributions:  statistics of the results

• Flutter bounds



• Aeroelastic Prediction

• AePW-2 Plans

• Example Results from OC 

members
• Concluding Remarks
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Case #1: Attached flow Forced Oscillation case

Case 1 Case 2 Optional Case 3

A B C

Mach 0.7 0.74 0.85 0.85 0.85

Angle of 
attack

3 0 5 5 5

Dynamic
Data Type

Forced 
Oscillation

Flutter Unforced 
Unsteady  

Forced Oscillation Flutter

Notes: • Attached flow 
solution 

• Oscillating 
Turn Table 
(OTT) exp
data

• Unknown flow 
state

• Pitch and 
Plunge 
Apparatus 
(PAPA) exp
data 

• Separated flow 
effects

• Oscillating 
Turn Table 
(OTT)
experimental 
data

• Separated flow 
effects

• Oscillating Turn 
Table (OTT)
experimental 
data

• Separated flow 
effects on 
aeroelastic 
solution

• No 
experimental 
data for 
comparison



These computational results agree much better with the experimental 
data than the case for AePW-1 (Case #3 for AePW-2)

Static pressure comparisons are a relatively easy and almost-for-free 
comparison enroute to the unsteady results comparisons

Results from 3 separate analysis codes are shown here.  (Reynolds 
Averaged Navier Stokes simulations with Spalart-Allmaras turbulence 
models)

Steady rigid 

pressure 

distributions 
Example Results for 

Case #1

Mean values of Cp

DIRECT COMPARISON WITH 
EXPERIMENTAL DATA at 60% 
span only.  No experimental 
data available at 95% span.



Forced Oscillation Comparison Data

• FRFs at excitation frequency: (Cp / a)
o Experimental comparison data at 60% span

o FRFs as functions of chord

• Time history data
o Angle of attack

o Leading and trailing edge displacements

o Pressure coefficients

o Lift & pitching moment coefficients

o Sectional lift & pitching moment coefficients

• FRFs from 0-100 Hz

Forced Oscillation data and results are 

requested at the following locations & conditions
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Case #1

Frequency Response 

Functions

for Forced Oscillation 

Cp / a
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• Forced oscillation at 10 Hz
• FRFs shown at 10 Hz, as functions 

of chord
• Shown here only for the 

experimental data
• Experimental data available only 

at 60% span



Case #2: Low Mach number Flutter Simulations

Case 1 Case 2 Optional Case 3

A B C

Mach 0.7 0.74 0.85 0.85 0.85

Angle of 
attack

3 0 5 5 5

Dynamic
Data Type

Forced 
Oscillation

Flutter Unforced 
Unsteady  

Forced Oscillation Flutter

Notes: • Attached flow 
solution 

• Oscillating 
Turn Table 
(OTT) exp
data

• Unknown flow 
state

• Pitch and 
Plunge 
Apparatus 
(PAPA) exp
data 

• Separated flow 
effects

• Oscillating 
Turn Table 
(OTT)
experimental 
data

• Separated flow 
effects

• Oscillating Turn 
Table (OTT)
experimental 
data

• Separated flow 
effects on 
aeroelastic 
solution

• No 
experimental 
data for 
comparison

Extend focus to coupled aeroelastic simulations



Flutter Simulation Comparison Data

• FRFs at flutter frequency: (Cp / a)
o Experimental comparison data at 60% and 95% span

o FRFs as functions of chord

• Time history data
o Angle of attack

o Leading and trailing edge displacements

o Pressure coefficients

o Lift & pitching moment coefficients

o Sectional lift & pitching moment coefficients

• FRFs from 0-100 Hz

• Static aeroelastic pressure coefficient 
distributions:  statistics of the results

• Flutter information:
o Damping & frequency at experimental flutter condition

o Flutter dynamic pressure and frequency

o Damping & frequency at any other points computed

Flutter simulation data and results are requested 

at the following locations & conditions
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Steady rigid 

pressure 

distribution 

Results from 3 separate 
analysis codes are shown 
here.
(Reynolds Averaged Navier
Stokes simulations with 
Spalart-Allmaras turbulence 
models)

Small perturbations on the 
angle of attack and Mach 
number were investigated.  
These perturbations are not 
part of the AePW-2 case 
matrix. 

DIRECT COMPARISON WITH 
EXPERIMENTAL DATA

Example results for Case #2

Mean values of Cp

at 60% Span Station

Upper Surface



This data is requested
• At the experimental flutter 

dynamic pressure
• At the computational flutter 

dynamic pressure
• At 95% span only

(The wing itself is rigid, so span   
station will not matter)

• These example results were 
calculated using 
o URANS + SA 
o Medium fidelity grid
o Relatively coarse time step
o 168.8 psf, the experimental 

flutter dynamic pressure
• The growing displacements and 

angles show that this solution 
predicts that flutter onset occurs at 
a lower dynamic pressure. 

• The twist angle time history was 
analyzed to produce the damping 
and frequency results

Time history data of 
displacement & twist 



.

The results shown here are at 
60% span for the upper surface 
at the dynamic pressure of the 
experimental data set (168.8 
psf)

Data sets are requested at 
• 60% and 95% span 
• Upper & lower surfaces
• Experimental flutter 

condition (168.8 psf) & 
Computational flutter 
condition as determined
by each analysis team

Cp vs time and x/c



Quantities
• Total lift & pitching moment 

coefficients for the wing
• Sectional lift & pitching 

moment coefficients at 
o 60% span 
o 95% span

Time histories of
Lift & 

Pitching moment 
coefficients

Dynamic pressures
• 168.8 psf: Experimental 

dynamic pressure where 
unstable aeroelastic
oscillations occurred

• Computational flutter 
condition as determined
by each analysis team



Example simulation results:  
Slices through the pressure 

field at different points in the 

flutter cycle

31
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Example Flutter 

summary results

• These example results were calculated 
using 
o URANS + SA 
o Medium fidelity grid
o Relatively coarse time step

• The generalized displacement time 
histories were analyzed to produce the 
damping and frequency results



Optional analysis case:  Mach 0.85

Case 1 Case 2 Optional Case 3

A B C

Mach 0.7 0.74 0.85 0.85 0.85

Angle of 
attack

3 0 5 5 5

Dynamic
Data Type

Forced 
Oscillation

Flutter Unforced 
Unsteady  

Forced Oscillation Flutter

Notes: • Attached flow 
solution 

• Oscillating 
Turn Table 
(OTT) exp
data

• Unknown flow 
state

• Pitch and 
Plunge 
Apparatus 
(PAPA) exp
data 

• Separated flow 
effects

• Oscillating 
Turn Table 
(OTT)
experimental 
data

• Separated flow 
effects

• Oscillating Turn 
Table (OTT)
experimental 
data

• Separated flow 
effects on 
aeroelastic 
solution

• No 
experimental 
data for 
comparison

• Repeat of AePW-1 test case, in part
• Investigate unsteady separated flow modeling
• Utilize time-accurate methodology for unforced “steady” solution
• Utilize higher fidelity modeling and/or different turbulence modes
• Investigate solution convergence, especially temporal convergence



Predictions of upper surface shock location
• Varied by > 20% of the chord
• Were aft of experimental data

Lower surface aft-of-shock pressures
Differed from experiment in
• Distribution
• Magnitude 
• Sign

Case # 3A

(AePW-1 results)

Steady rigid pressure 

distributions

Mean value of Cp
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Case # 3B 

(AePW-1 results)

Forced Oscillation 

FRFs

Variations & discrepancies in the unforced 
system predictions propagate through to 
the unsteady characteristics

Are these differences significant in the 
flutter prediction?  

Optional Case # 3C will address this.



A glance of all of the cases:  Rigid unforced system data

Case 1 Case 2 Optional Case 3

A B C

Mach 0.7 0.74 0.85 0.85 0.85

Angle of 
attack

3 0 5 5 5

Dynamic
Data Type

Forced 
Oscillation

Flutter Unforced 
Unsteady  

Forced Oscillation Flutter

Notes: • Attached flow 
solution 

• Oscillating 
Turn Table 
(OTT) exp
data

• Unknown flow 
state

• Pitch and 
Plunge 
Apparatus 
(PAPA) exp
data

• Separated flow 
effects

• Oscillating 
Turn Table 
(OTT)
experimental 
data

• Separated flow 
effects

• Oscillating Turn 
Table (OTT)
experimental 
data

• Separated flow 
effects on 
aeroelastic 
solution

• No 
experimental 
data for 
comparison



For the primary forced oscillation case, Case #1, disagreements with 
experimental data limited to the peak of the upper surface shock.

For the primary flutter case, Case #2, shows a well-matched rigid pressure 
distribution without much variation among the computational results.

The complexity of the Case #3 is indicated by the variation among the 
computational results & difference from the experimental data Shock 
location, shock strength, aft loading especially on lower surface.

Steady rigid 

pressure 

distributions 

Case comparisons

60% span,

Mean values of Cp



• Aeroelastic Prediction

• AePW-2 Plans

• Example Results from OC members

• Concluding Remarks
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We invite you to participate

Participation is unrestricted

Important Dates

• Kickoff Meeting: SciTech 2015
• Workshop: SciTech 2016
• Computational Results Submitted by Nov 15, 2015
• Computational Team Telecons:  1st Thursday of every 

calendar month 11 a.m. EST



AePW-2 KickOff Meeting

• Tonight:  Monday, January 5th, 2015

• 1900-2100 hrs

• Room: Emerald 4

Agenda

• Open discussion and comments

• Plans for AePW-2

• Locating what you need to participate in AePW-2

• Website tour & Walkthrough of aspects

• Preliminary results from 3 analysis teams already working towards AePW-2

• Comparison of current results (with Experimental data; with AePW-1 results where 
appropriate)

• Relevant lessons from AePW-1, including examination through the data

• Re-analyses after AePW-1; Things that we’re learned

• Q&A

• Future directions presentations and discussions
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Thank you

&

We look forward to working with you

The Aeroelastic Prediction Workshop is sponsored by the AIAA Structural 

Dynamics Technical Committee


