Benchmark Supercritical Wing Results using NSU3D

Dimitri Mavriplis
Mike Long
Zhi Yang
University of Wyoming
NSU3D Description

- Unstructured RANS solver
- Widely used for fixed wing (steady) and rotorcraft (unsteady)
 - Vertex-based discretization
 - Mixed elements (prisms in boundary layer)
 - Matrix artificial dissipation
 - Option for Roe scheme with gradient reconstruction
 - No cross derivative viscous terms
 - \(\nabla (\mu \nabla v) \) (Similar to incompressible Full NS)
 - Option for full Navier-Stokes terms
 - Extended stencil with edge-based normal derivatives
Solver Description (cont’d)

• Spalart-Allmaras turbulence model
 – (original published form)
 – Used exclusively in AePW calculations

• Options for
 – Wilcox k-omega model
 – Mentor SST Model
 – Not exercised in AePW
Solution Strategy

- Steady or BDF2 Implicit Time-stepping
 - Deforming meshes with GCL
- Jacobi/Line Preconditioning
 - Line solves in boundary layer regions
 - Relieves aspect ratio stiffness
- Agglomeration multigrid
 - Fast grid independent convergence
- Parallel implementation
 - MPI/OpenMP hybrid model
 - MPI only on local 512 core cluster
Cases Run

- Steady State
 - Coarse mesh
 - Medium mesh (steady and time-dependent)

- Time dependent runs
 - No mesh deformation (mesh rotated as solid body)
 - f=1hz and f=10hz
 - Coarse and medium meshes
 - Time step and convergence study
 - 180, 360, 720 time steps per period
 - 20 and 50 multigrid cycles per time step
 - 4 periods of simulation time
Sample Run Characteristics

• Use workshop meshes
 – Coarse, Medium (mixed NC unstructured)

• Steady-state runs
 – 500 to 1000 multigrid cycles
 – Coarse mesh converged
 – Medium mesh :incomplete convergence
 • Ran also in time dependent mode

• Run on in house 512 core cluster
 – Coarse grid: 128 cores: 1.08 secs/MG cycle
 – Medium grid: 256 cores, 1.85 secs/ MG cycle
BSCW Steady State Convergence

- Coarse mesh converged well
- Medium mesh did not produce steady solution
 - Run as time dependent case
 - Required resolving period of oscillation with small enough time step
BSCW Steady State Convergence

- Coarse mesh converged well
- Medium mesh did not produce steady solution
 - Run as time dependent case
 - Required resolving period of oscillation with small enough time step
For f=1Hz, significant variation with C_L and C_M with:

- Time step size
- Number of subiterations
- Mesh size
BSCW Time Dependent Results
(f=10Hz)

For f=10Hz:
- Time step size has little effect
- Effect due to mesh size
- Temporal convergence well behaved
 - Time steps small enough to resolve unsteady flow phenomena
BSCW Time Dependent Results
(f=1Hz)

- Density correction converged 1.5 orders of magnitude at each time step (not residual)
- Forces well converged at each time step
- Convergence is variable for low frequency case
• Density correction converged 2 to 3 orders of magnitude at each time step (not residual)
• Forces well converged at each time step
• Convergence more uniform for high frequency case
 – Smaller physical time step (compared to shock instability)
BSCW Steady/Mean Cp Distribution

Steady
• Reasonable agreement with experimental data

Mean at f=1Hz
BSCW Steady/Mean Cp Distribution

Mean at f=10Hz
- Reasonable agreement with experimental data

Mean at f=1Hz
BSCW Unsteady Pressures

(f=1hz)

Upper Surface

Lower Surface

magnitude/deg

X/C

magnitude/deg

X/C

phase(deg)

phase(deg)

BSCW Experiment
BSCW Coarse Mesh, Δt = T/180, 20MG
BSCW Coarse Mesh, Δt = T/360, 20MG
BSCW Coarse Mesh, Δt = T/720, 20MG
BSCW Coarse Mesh, Δt = T/720, 50MG
BSCW Medium Mesh, Δt = T/720, 50MG
BSCW Unsteady Pressures

(f=1hz)
BSCW Unsteady Pressures (f=10hz)
BSCW Unsteady Pressures

(f=10hz)
Conclusions and Future Work

• f=1hz results sensitive in some locations to:
 – Time step size
 – Level of implicit time step convergence
• f=10hz insensitive to time step size
• Both f=1Hz,10Hz sensitive to grid size
• SA turb model well known deficiencies for shock-boundary-layer separation
• Future work to investigate finer meshes, time steps using tight convergence tolerances, SST model