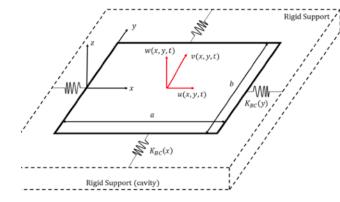
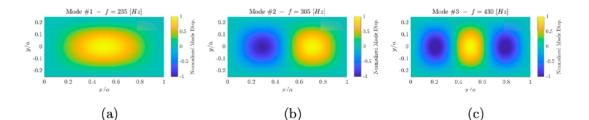
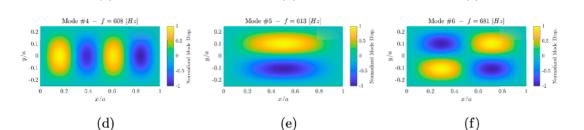
RC-19 COMPLIANT PANEL ANALYSIS

GOALS

- Develop computational aerothermoelasticity simulation capabilities
 - Implement nonlinear structural model (Freydin and Dowell, 2021)
 - PT / NS CFD-based aerodynamics
- Verification through simulation of LCO conditions






ATE MODEL - FREYDIN AND DOWELL 2021

• Modal expansion $w = \sum_{i=1}^{N_w} w_i(t)\psi_i^w(x,y)$

$$egin{aligned} &u=u_R(t)\psi^u_R(x,y)+\sum_i^{N_u}u_i(t)\psi^u_i(x,y)\ &v=v_R(t)\psi^v_R(x,y)+\sum_i^{N_v}v_i(t)\psi^v_i(x,y) \end{aligned}$$

ATE MODEL - FREYDIN AND DOWELL 2021

$$\begin{split} M_{nk}\ddot{w}_{k} + \bar{C}_{nk}\dot{w}_{k} + \left(G_{nk}^{(1)} - G_{nk}^{Th}\right)w_{k} \\ &+ D_{nkrs}^{(1)}w_{k}w_{r}w_{s} + u_{r}E_{nkr}^{(1)}w_{k} + v_{r}F_{nkr}^{(1)}w_{k} = Q_{n} \\ M_{nk}^{u}\ddot{u}_{k} + \left(A_{nk} + K_{nk}^{u}\right)u_{k} + C_{nk}v_{k} = -E_{ikn}w_{i}w_{k} + A_{n}^{Th} \\ M_{nk}^{v}\ddot{v}_{k} + \left(B_{nk} + K_{nk}^{v}\right)v_{k} + C_{in}u_{i} = -F_{ikn}w_{i}w_{k} + B_{n}^{Th} \end{split}$$

 $M_{Rk}^{u}\ddot{u}_{k} + M_{Rk}^{v}\ddot{v}_{k} + (A_{RK} + K_{Rk}^{u} + C_{k}R)u_{k} + (B_{RK} + K_{Rk}^{v} + C_{Rk})v_{k} = -(E_{ikR} + F_{ikR})w_{i}w_{k} + A_{R}^{Th} + B_{R}^{Th}$

ATE MODEL - FREYDIN AND DOWELL 2021

- Generalized force due to
 - PT pressure variation on the panel due to the panel's motion

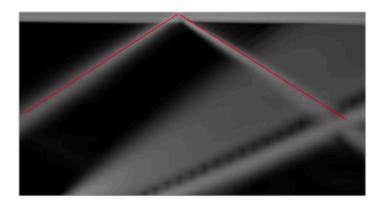
$$\Delta p_{PT} = p(x, y, t) - p_{\infty} = \gamma p_{\infty} \left(\frac{v_n}{a_{\infty}}\right) = \frac{\rho_{\infty} U_{\infty}}{M_{\infty}} \left(\frac{\partial w}{\partial t} + U_{\infty} \frac{\partial w}{\partial x}\right)$$

$$\Delta p_{PT} = \frac{\rho_{\infty} U_{\infty}}{M_{\infty}} \left[\sum_{k}^{N_{w}} \frac{\partial w_{k}(t)}{\partial t} \psi_{k}^{w}(x,y) + U_{\infty} \sum_{k}^{N_{w}} w_{k}(t) \frac{\partial \psi_{k}^{w}(x,y)}{\partial x} \right]$$

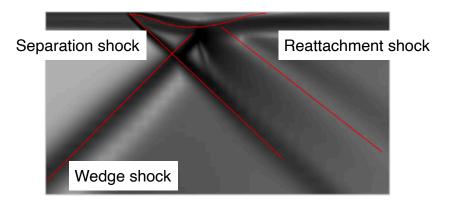
- Static pressure difference. Independent of the panel's motion

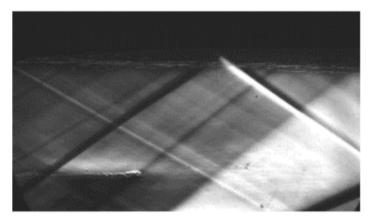
$$\Delta p_s(x,y) = p_s(x,y) - p_c$$

$$Q_n = \underbrace{A_{\dot{w}_{nk}}\dot{w}_k(t) + A_{w_{nk}}w_k(t)}_{Q_n^{PT}} + \underbrace{\left[\iint \Delta p_s(x,y)\psi_n^w(x,y)dxdy\right]}_{Q_n^s}$$

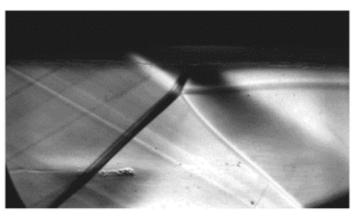

RIGID SIMULATION (CFD)

- Simulations at 0, 4, and 12 degrees shockgenerator (wedge) angle
- Compared results to experimental (Schlieren images) and computational data (Brouwer et al. 2021) available
- Explored:
 - Mesh resolution
 - Turbulence modeling



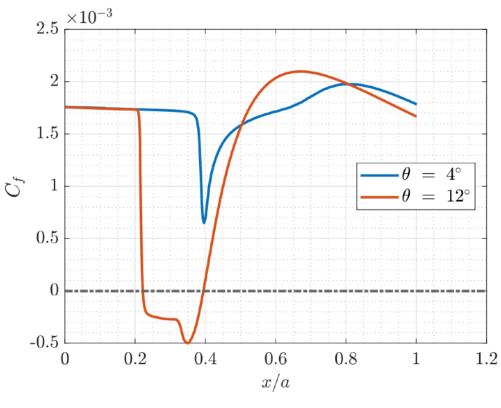

FLOW AT 4 AND 12 DEG. SHOCK GENERATOR CASES

(a) Numerical



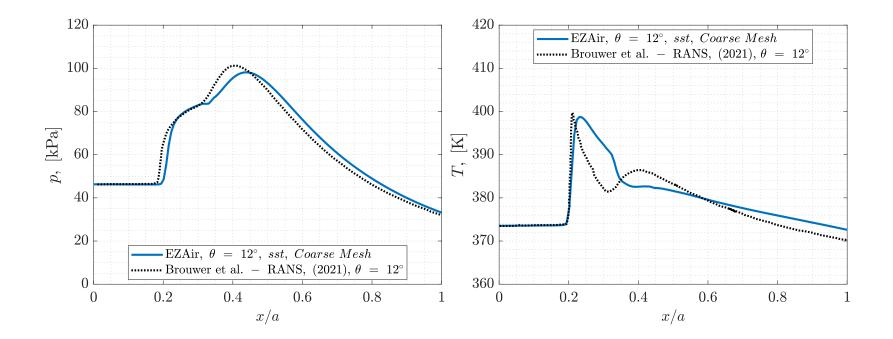
(b) Experimental (adapted from Brouwer et al. [2])

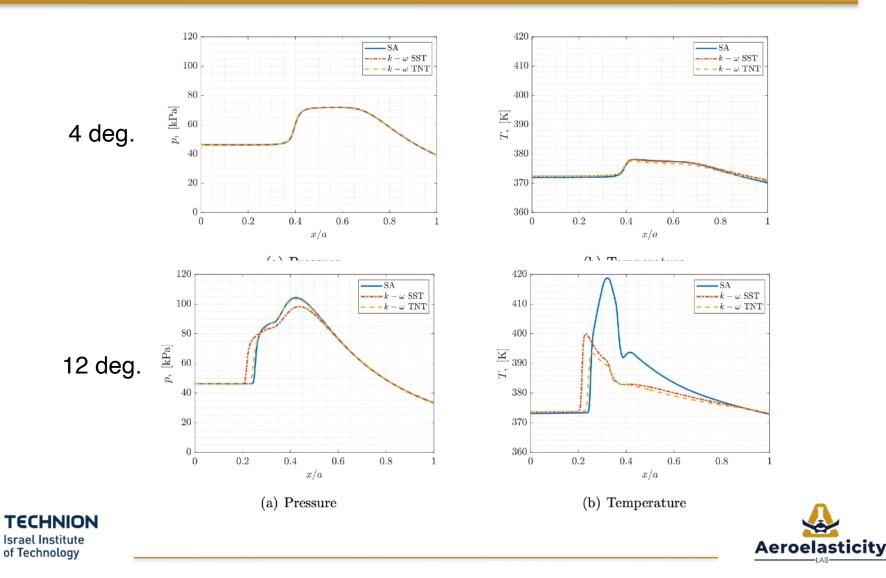
4 deg.


(b) Experimental (adapted from Brouwer et al. [2])

12 deg.

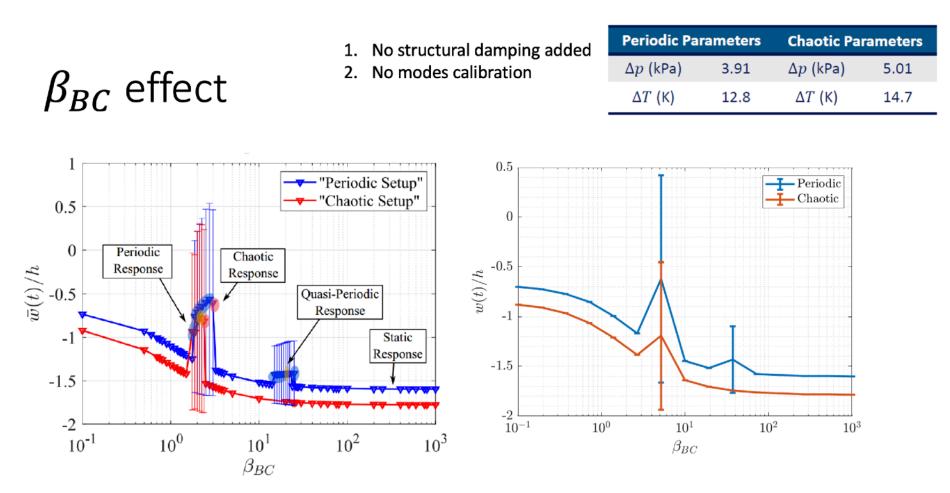
FLOW AT 4 AND 12 DEG. SHOCK GENERATOR - FRICTION COEFF.


• Shock location and separation extent similar to Brouwer et al. 2020


VALIDATION, 12 DEG WEDGE

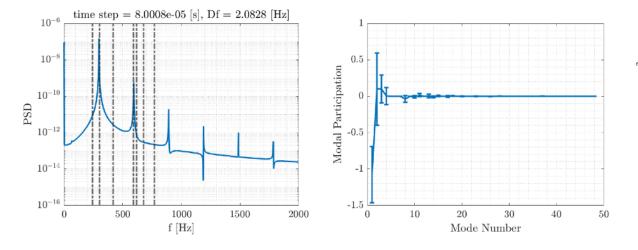
TURBULENCE MODEL

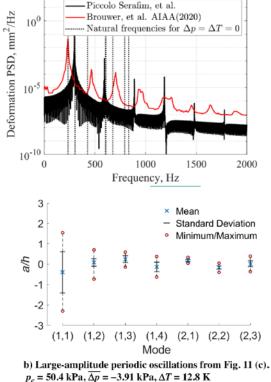
AEROELASTIC SIMULATION


- Matlab simulation of the nonlinear plate model with PT aerodynamics
- For 0 deg shock-generator angle, investigate the effects of
 - Temperature (constant temp. difference between the panel and frame)
 - Pressure difference (constant static pressure difference between the pressurized cavity and the exposed panel surface)
 - BC stiffness parameter

Designation	$\Delta p_s \; [\mathrm{kPa}]$	$\Delta T \; [\mathrm{K}]$
Setup A ("Periodic")	- 3.91	12.8
Setup B ("Chaotic")	- 5.01	14.7

VALIDATION - SERAFIM ET AL. 2023

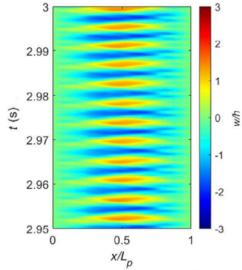

- 1. Trends captured well (given the sparse sampling of β_{BC})
- 2. Actual values (specifically, w for chaotic setup) are mis-predicted; could be result of damping, calibration, etc...


VALIDATION - MODAL RESPONSE

- 1. No structural damping added
- 2. No modes calibration

"Periodic" setup, $\beta_{BC} = 4.5$

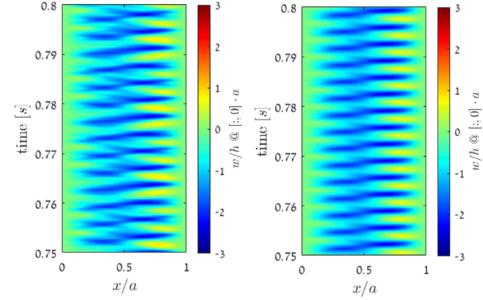
Periodic Parameters					
Δp (kPa)	3.91				
ΔT (K)	12.8				


- Response is mainly in the 2nd mode (similar to Luisa's results), while Brouwer et al. show mostly the 1st mode
- 2. Dependence on IC's or β_{BC}

FREQUENCY CALIBRATION

1. No structural damping added

"Periodic" setup, $\beta_{BC} = 4.5$


Periodic Parameters Δp (kPa)3.91 ΔT (K)12.8

c) Large-amplitude periodic oscillations. $y/L_p = 0.25, p_c = 50.4$ kPa, $\overline{\Delta p} = -3.91$ kPa, $\Delta T = 12.8$ K

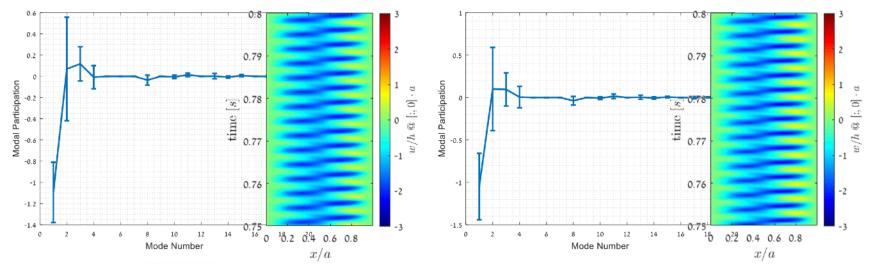
$$\theta = 0 \text{ deg}, p_{\infty} = 44.1 \text{ kPa}, Re_{L_p} = 7.50 \times 10^6.$$

Brouwer et al.

With freq and damp calibration

W/O freq and damp calibration

- 1. 2nd mode visible in the computation
- 2. Amplitude is smaller (especially into the cavity), mean is different!
- 3. Maybe cavity effect? (Luisa showed it is minor...)


PRESSURE FROM CFD ANALYSIS

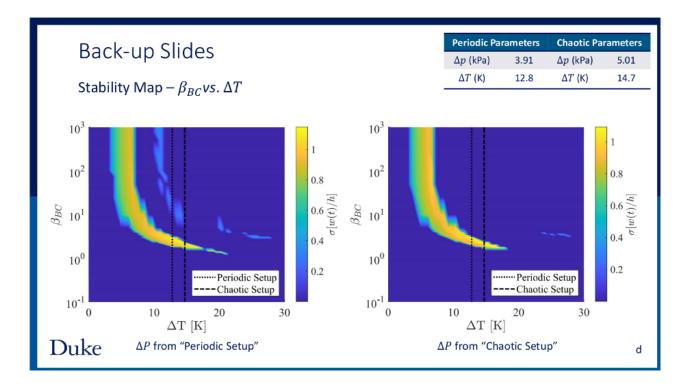
- Considering the distribution, there is some effect, but the character of the response is similar (periodic with mostly 2nd mode contribution)
- 1. No structural damping added
- 2. No modes calibration

"Periodic"	setup,	CFD-based	Δp_s
------------	--------	-----------	--------------

Periodic Parameters					
Δp (kPa)	3.91				
ΔT (K)	12.8				

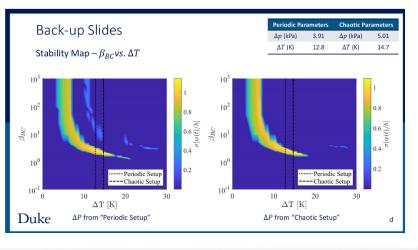
Computation	$mean(\Delta p_s)$	$mean\left(\frac{w}{h}\right)$	$std\left(\frac{w}{h}\right)$	
CFD-based Δp_s dist. (LEFT)	3.7123 kPa (~0.36 kPa std)	0.76323-	0.83154	
CFD-based mean Δp_s dist. (RIGHT) (CONSTANT_DELTAS = 1)	3.7123 kPa (constant)	0.68189-	0.96475	

OTHER PARAMETERS

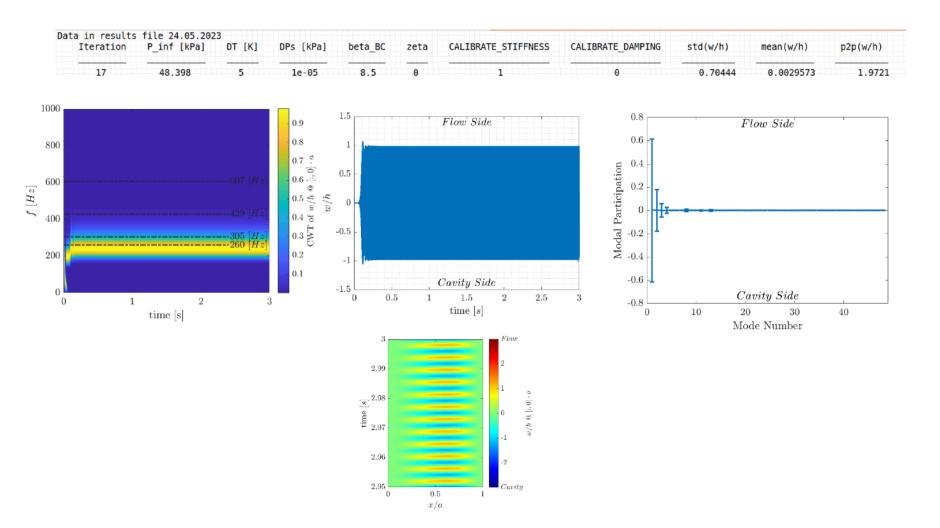

- Damping (0.05%)
- Frequency and damping calibration
- "Chaotic" setup

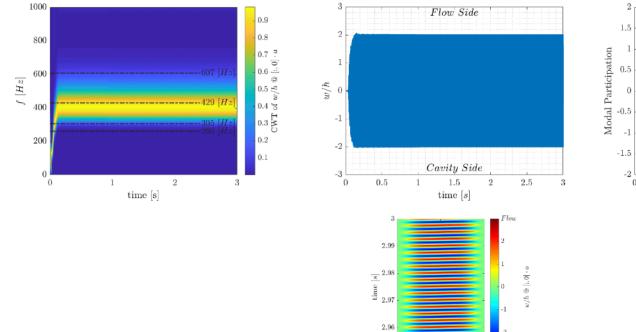
 All yielded amplified second mode responses

STABILITY MAP BY SERAPHIM ET AL.



• Large response at $\Delta T \approx 5$ and large β_{BC} values

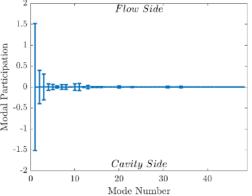

- Fix $\Delta T = 10$, $\beta_{BC} = 0.5 : 0.5 : 10$, $\Delta P = 0.01 KPa$
- Increasing β_{BC} -
 - Response magnitude increases (both STD and P2P)
 - First mode participation increases



 $\beta_{BC} = 8.5$

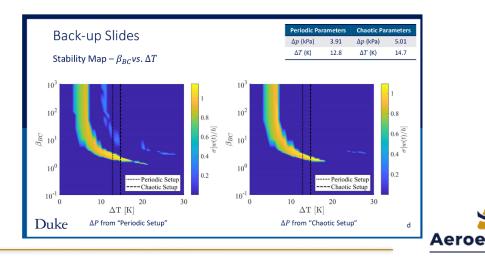
 $\beta_{BC} = 1000$

Data in results Iteration	file: P_inf [kPa]	DT [K]	DPs [kPa]	beta_BC	zeta	CALIBRATE_STIFFNESS	CALIBRATE_DAMPING	std(w/h)	mean(w/h)	p2p(w/h)
1	48.398	5	1e-05	1000	Θ	1	Θ	1.4681	-0.0028277	4.0393


2.95

0.5

x/a


Cavity

1

CURRENTLY

- Fix β_{BC} to a large value (~clamped panel) and study temperature and then pressure differential effects
- Assuming:
 - Test temp measurements inaccuracies?
 - Test temp measured at a single point might not be
 - "mean temp"

