AePW-3 High Speed Working Group RC-19 no impingement shock case

Aeroelasticity Laboratory | Duke University Luisa Piccolo Serafim, Earl Dowell

- For the experimental configuration considered \rightarrow the flutter/LCO results are sensitive to Δp , ΔT , and in-plane boundary conditions.
- For different combinations of Δp and ΔT considered to date \rightarrow there are different intervals for β_{BC} where flutter/LCO is found
- For the no-shock impingement case \rightarrow piston theory, full potential flow models present very similar results. The same similarity is seen for the static deformation if using the Euler aerodynamic model, but the β_{BC} values at which LCO occurs differ

Computational Method

Nonlinear Aeroelastic Model

Static Pressure Differential:

Fig. 1 Plate top view with freestream flow, static pressure differential, and support and plate temperatures.

Fig. 2 Side view of plate, freestream flow, cavity, and in-plane edge stiffness K(x = [0,a],y); and cross section at -b/2 < y < +b/2.

Freydin and Dowell. AIAA(2020)

$$Q_m^{static} = \int_0^b \int_0^a \frac{\left[p_{\infty}(x,y) - p_{cavity}(x,y)\right]}{\rho_{\infty} U_{\infty}^2} \psi_n(x,y) dx dy$$

where
$$w(x,y,t) = \sum_n q_n(t) \psi_n(x,y) \rightarrow \begin{array}{c} \text{Linear} \\ \text{eigenmodes} \end{array}$$

Effect of In Plane Boundary Stiffness on Panel Response

Effect of In Plane Boundary Stiffness on Panel Response

Periodic Parameters		Chaotic Parameters		
Δp (kPa)	-3.91	Δp (kPa)	-5.01	
ΔT (K)	12.8	ΔТ (К)	14.7	

 β_{BC} can be determined from a ground vibration test

$$B_{BC} \equiv \frac{K_{BC}a}{Eh}$$

 $M_{\infty} = 1.94$

Effect of In Plane Boundary Stiffness on Panel Response

Flutter critical boundary - $\Delta p \ vs. \ \beta_{BC}$

ΔT and Δp sensibility

	$\Delta p = 0$	Nominal Δp (Periodic/Chaotic)	Δp from Diamond-Shock Profile	Δp from Exp. Data
$\Delta T = 0$	-	Steady Deformation	Steady Deformation	LCO (All range of β_{BC})
Nominal ∆ <i>T</i> (Periodic/Chaotic)	LCO (All range of β_{BC})	LCO (Limited range of β_{BC})	LCO (Limited range of β_{BC})	-
∆ <i>T</i> from Heat Equation	LCO (All range of β_{BC})	Steady Deformation	LCO (All range of β_{BC})	LCO (All range of β_{BC})

	$\Delta p = 0$	Nominal Δp (Periodic/Chaotic)	Δp from Diamond-Shock Profile	Δp from Exp. Data
$\Delta T = 0$	-	Steady Deformation	Steady Deformation	LCO (All range of β_{BC})
Nominal ΔT (Periodic/Chaotic)	LCO (All range of (_{BC})	LCO (Limited range of β_{BC})	LCO (Limited range of β_{BC})	-
∆ <i>T</i> from Heat Equation	LCO (All range of β_{BC})	Steady Deformation	LCO (All range of β_{BC})	LCO (All range of β_{BC})
Duke 0.9 0.85 0.85 0.8 0.8 0.75 0.65 0.65 0.65 0.65 10^{-1}	Periodic Chaotic 10^{0} 10^{1} 10^{0}	1.5 -0 0.5 $(\frac{1}{2}) = 0.5$ -1 -1.5 -2 10^{-1} 10^{-1}	0^{0} 10^{1} 10^{2} 10^{3}	

CASE I: Nominal ΔT (Periodic/Chaotic) vs. Δp from Diamond-Shock Profile

Uniform Δp distribution <u>only</u> on the y-direction

Duke

 $M_{\infty} = 1.92$

 $p_{\infty} = 50.139 \, kPa$

 $\Delta T = 13 K$

To match the mean static pressure on the panel by using isentropic relations:

Pressure profile on the wall into the PT matrices

 $Q_{m,n}(t) = q_m(t)S_{m,n} + \dot{q}_m(t)D_{m,n}$

$$S_{m,n} = \frac{1}{M_{\infty}} \int_{0}^{a} \int_{-\frac{b}{2}}^{\frac{b}{2}} \gamma p_{wall}(x,y) M_{dist}(x,y) \frac{\partial \psi_{m}(x,y)}{\partial x} \psi_{n}(x,y) dy dx$$
$$D_{m,n} = \frac{1}{M_{\infty}U_{\infty}} \int_{0}^{a} \int_{-b/2}^{b/2} p_{wall}(x,y) \sqrt{\left(\frac{\gamma}{R_{air}T_{0}}\right) \left[1 + \left(\frac{\gamma - 1}{2}\right) M_{dist}^{2}(x,y)\right]} \psi_{m}(x,y) \psi_{n}(x,y) dy dx$$

and

where

uke

$$M_{dist}(x,y) = \sqrt{\left[\left(\frac{p_{wall}(x,y)}{p_0}\right)^{-(\gamma-1)/\gamma}\right]\frac{2}{\gamma-1}}$$

 $p_{wall}(x, y) = p_{diamond-shock}(x, y)$

CASE I: Nominal ΔT (Periodic/Chaotic) vs. Δp from Diamond-Shock Profile

Effect of In Plane Boundary Stiffness on Panel Response

CASE I: Nominal ΔT (Periodic/Chaotic) vs. Δp from Diamond-Shock Profile

Effect of In Plane Boundary Stiffness on Panel Response

Using $\Delta p = p_{diamond-shock}(x, y) - p_{cavity}(x, y)$ in the Q_m^{static} definition Using $\Delta p = p_{diamond-shock}(x, y) - p_{cavity}(x, y)$ in the Q_m^{static} definition AND the PT matrices

CASE II: ΔT from Heat Equation vs. $\Delta p = 0$ ΔT distribution from heat equation

Duke

CASE II: ΔT from Heat Equation vs. $\Delta p = 0$ $\Delta p = 0, \Delta T$ from heat equation

CASE III: ΔT from Heat Equation *vs.* Δp from Experimental Data

Δp from Experimental Data, ΔT from heat equation

Pressure on the wall data from a CFD steady flow computation courtesy of Bret Stanford + measured pressure distribution on the panel wall

Question

Duke

 $0 \\ y/b$

CASE III: ΔT from Heat Equation *vs.* Δp from Experimental Data

 Δp from Experimental Data, ΔT from heat equation

IC sensibility

Using the "diamond shock-profile" with different IC's

IC=Initial Conditions

Different Aerodynamic Models

Aerodynamic Models

Linear Piston Theory

 $Q_n(t) = q_m(t)S_{m,n} + \dot{q}_m(t)D_{m,n}$

Analytical Solutions

Potential Flow Aerodynamics

$$Q_n(t) = q_m(t)S_{m,n} + \dot{q}_m(t)D_{m,n} + \int_0^t q_m(\tau)H_{m,n}(t-\tau)d\tau + \int_0^t \dot{q}_m(\tau)I_{m,n}(t-\tau)d\tau$$

Euler/CFD \rightarrow RANS/CFD $Q_n^{CFD}(t) = q_m(t)A_{m,n} + \dot{q}_m(t)B_{m,n} + \int_0^t q_m(\tau)E_{m,n}(t-\tau)d\tau$ Allows for shock impingement analysis \leftarrow Based on CFD solution Duke

Preliminary results using Euler/CFD – Ansys Fluent

Using Piston Theory

Using Euler/CFD – work in progress

Preliminary results using Euler/CFD – Ansys Fluent

Approx. Run time for each Aero. Model

Aaradunamia Analytical		CFD		LCO run time/ β_{BC}			
Case	Solution	CFD	Run time/mode	Local Computer	Cluster	Pros	Cons
Piston Theory	Х	-	-	< day	A couple of hours	Really fast	Local No shock case Inviscid
Potential Flow	х	-	-	\sim 1 day *	< 1 day*	Non-local Relative fast	No shock case Inviscid
Euler/CFD	-	Х	~1-2 days	-	< day	Shock case Potential for RANS	Takes more time to run
	_	Х	~3-4 days	-	-	Shock case	Takes more

4° Shock Wedge

p_{∞} comparison

- For the experimental configuration considered \rightarrow the flutter/LCO results are sensitive to Δp , ΔT , and in-plane boundary conditions.
- For different combinations of Δp and ΔT considered to date \rightarrow there are different intervals for β_{BC} where flutter/LCO is found
- For the no-shock impingement case \rightarrow piston theory, full potential flow models present very similar results. The same similarity is seen for the static deformation if using the Euler aerodynamic model, but the β_{BC} values at which LCO occurs differ

Back-Up Slides

New data: p_{∞} on the wall

Duke

New delta p data from a CFD steady flow computation courtesy of Bret Stanford

+ measured pressure distribution on the panel wall

New data: p_{∞} on the wall

$\Delta T = 0$, nominal periodic and chaotic Δp

Periodic Parameters		Chaotic Parameters		
Δp (kPa)	3.91	Δp (kPa)	5.01	

 $\frac{\text{Uniform } \Delta p \text{ distribution}}{(x- \text{ and } y- \text{ directions})}$

Nominal Δp , ΔT from heat equation

Duke

 Δp from Periodic Setup (the same behavior was seen using the Chaotic Setup values)

$\Delta p = 0$, nominal periodic and chaotic ΔT

Periodic Parameters		Chaotic Parameters		
ΔТ (К)	12.8	ΔТ (К)	14.7	

$\Delta T = 0$, Δp from measurement

0.5 0 $\bar{w}(t)/h$ -0.5 -1 10^{0} 10^{2} 10⁻¹ 10^{3} 10^{1} β_{BC}

 $M_{\infty} = 1.92$

 $p_c = 50.139 \, kPa$

Pressure distribution on the PT and static pressure terms

Nonuniform span-wide p_{∞} leads to oscillatory response for the wide range of β_{BC} , for $\Delta T = 0$

Δp from the Diamond Shock-Profile, ΔT from heat equation

$\Delta T = 0$, Δp from "diamond shock"

Pressure on the wall data from a CFD steady flow computation

AePW-3 High Speed Working Group

Aeroelasticity Laboratory | Duke University Luisa Piccolo Serafim, Earl Dowell luisa.piccolo.serafim@duke.edu

