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Summary

* For the experimental configuration considered = the flutter/LCO results
are sensitive to Ap, AT, and in-plane boundary conditions.

* For different combinations of Ap and AT considered to date = there are
different intervals for Sz where flutter/LCO is found

* For the no-shock impingement case = piston theory, full potential flow
models present very similar results. The same similarity is seen for the
static deformation if using the Euler aerodynamic model, but the Sz
values at which LCO occurs differ
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Computational Method

Nonlinear Aeroelastic Model

Fig. 1 Plate top view with freestream flow, static pressure differential,
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Fig. 2 Side view of plate, freestream flow, cavity, and in-plane edge
stiffness K(x = [0,a],y); and cross sectionat —b/2 < y < +b/2.

Static Pressure Differential:
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Effect of In Plane Boundary Stiffness on Panel Response

Effect of In Plane Boundary Stiffness on Panel Response

Periodic Parameters Chaotic Parameters
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Effect of In Plane Boundary Stiffness on Panel Response

Flutter critical boundary - Ap vs. Bg.
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AT and Ap sensibility
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CASE I: Nominal AT (Periodic/Chaotic) vs. Ap from Diamond-Shock Profile
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Parameters considered in this analysis:

Uniform Ap Mo = 1.92

To match the mean static

distribution only Do = 50.139 kPa pressure on the panel by
on the y-direction using isentropic relations:

AT =13 K
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CASE I: Nominal AT (Periodic/Chaotic) vs. Ap from Diamond-Shock Profile

Pressure profile on the wall into the PT matrices

Qm,n(t) — qm(t)Sm,n + Qm(t)Dm,n

J j YPwau (%, ¥)Mgise (x, ) l/)m( y)lpn(x»y)dydx

o 14 y—1
)2 pwall(x, Y) <RairTo> [1 + < > )Mdlst(x y)] Um (x, y) lpn(x y)dydx

where

x,y)\
Mgise(x,y) = \/[(pwallloi) ) Pwau(%,¥) = Paiamond—shock (X, ¥)
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Enforcing Ap as Brouwer et al. (2020) in the
Qstatic definition

Periodic
Response

CASE I: Nominal AT (Periodic/Chaotic) vs. Ap from Diamond-Shock Profile

Effect of In Plane Boundary Stiffness on Panel Response

Using Ap = Daigmond—shock (X, Y) — pcavity(x: y) in

the QL3¢ definition AND the PT matrices
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CASE I: Nominal AT (Periodic/Chaotic) vs. Ap from Diamond-Shock Profile

Effect of In Plane Boundary Stiffness on Panel Response

Using Ap = Pdiamond—shock (x,y) — pcavity(x» y) in Using Ap = pd.iamond—shock(x: y) — pcavity(xr y) in
the Q3St4tC definition the Q3St4tiC definition AND the PT matrices
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CASE II: AT from Heat Equationvs. Ap = 0

AT distribution from heat equation

Heat Equation
Scaled Heat Equation
—o Measured AT




CASE II: AT from Heat Equationvs. Ap = 0

Ap = 0, AT from heat equation
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CASE lil: AT from Heat Equation vs. Ap from Experimental Data

Ap from Experimental Data, AT from heat equation
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CASE lil: AT from Heat Equation vs. Ap from Experimental Data

Ap from Experimental Data, AT from heat equation
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|C sensibility

Using the “diamond shock-profile” with different IC’s
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Different Aerodynamic Models




Aerodynamic Models

Linear Piston Theory J Qn(t) = @gn(®)Smn + ¢m(E)Dipy

_ Analytical

. Solutions
Qn(t) - Qm(t)Sm,n + Qm(t)Dm,n +

t t
j Qm(T)Hm,n(t —1)dt + j Qm(T)Im,n(t —1)dt
0 0

=

[ Potential Flow Aerodynamics ]

t
[ Euler/CFD - RANS/CFD ] D) = gm(OAmn + Gm(®)Bmn + f qm (D) Emn(t — T)dt

o~/

Allows for shock impingement analysis «<—— Based on CFD solution
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Preliminary results using Euler/CFD — Ansys Fluent

Using Piston Theory Using Euler/CFD — work in progress
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Preliminary results using Euler/CFD — Ansys Fluent
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Approx. Run time for each Aero.

Model

CED LCO run time/B g

Aerodynamic Analytical

Case Solution CFD Run Local

time/mode | computer Cluster

A couple of

i <
Piston Theory day hours

Potential

~ & <1 *
Flow 1 day day

Euler/CFD ~1-2 days < day

— RANS/CFD ~3-4 days

Cons

Really fast

Non-local
Relative fast

Shock case
Potential for
RANS

Shock case
Viscosity effects

Local
No shock case
Inviscid

No shock case
Inviscid

Takes more
time to run

Takes more
time to run

»  Work in progress <«
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4° Shock Wedge




Do COMparison

|
Euler/CFD - Mach 1.94

Euler/CFD - Mach 1.92
RANS/CFD - Mach 1.94
RANS/CFED - Mach 1.92
Euler/CFD - Mach 1.92 - w/ Wall
——RANS/CFD - Mach 1.92 - w/ Wall
= = =Brouwer, et al. AVIATION (2023)/RANS - Mach 1.92
Brouwer, et al. AVIATION (2023)/PSP - Mach 1.92




Summary

* For the experimental configuration considered = the flutter/LCO results
are sensitive to Ap, AT, and in-plane boundary conditions.

* For different combinations of Ap and AT considered to date = there are
different intervals for Sz where flutter/LCO is found

* For the no-shock impingement case = piston theory, full potential flow
models present very similar results. The same similarity is seen for the
static deformation if using the Euler aerodynamic model, but the Sz
values at which LCO occurs differ
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New data: ps, on the wall
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New data: ps, on the wall
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AT = 0, nominal periodic and chaotic Ap
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Nominal Ap, AT tfrom heat equation
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Dllke Ap from Periodic Setup (the same behavior was seen using the Chaotic Setup values)




Ap = 0, nominal periodic and chaotic AT
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AT = 0, Ap from measurement
0.5

My, = 1.92

p. = 50.139 kPa

Pressure distribution on the PT
and static pressure terms

Nonuniform span-wide p, leads to
oscillatory response for the wide
range of g, for AT =0




Ap from the Diamond Shock-Profile, AT from heat equation
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AT = 0, Ap from “diamond shock”
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