

AePW-4 Kickoff Meeting

January 7th, 2024 AIAA SciTech Forum

- AePW goals and motivation
- Organizing Committee
- AePW history
- AePW-3 working groups
- Transition to AePW-4

- An open and impartial forum to assess and evaluate the current stateof-the-art and state-of-the-practice in computational aeroelastic modeling
 - How effective are current solvers at predicting aeroelastic physics critical to aircraft analysis and design?
 - How can we understand the reasons for why our solvers may fail?
 - Can we establish best-practices for using aeroelastic solvers?
 - Can we establish uncertainty bounds for computational results?
 - Can we specify requirements on future validation experiments?
- What computational and experimental areas of research need further development?

Organizing Committee

- Eric Blades, ATA Engineering
- Carlos Cesnik, University of Michigan
- Pawel Chwalowski, NASA LaRC
- Adam Jirasek, USAFA
- Jeff Ouellette, NASA LaRC
- Rafael Palacios, Imperial College London
- Daniella Raveh, Technion
- Markus Ritter, DLR
- Walt Silva, NASA LaRC
- Bret Stanford, NASA LaRC

AePW History

- AePW-1 (Honolulu, 2012)
 - <u>https://c3.ndc.nasa.gov/dashlink/static/media/other/AEPW.htm</u>
 - Focus on transonic unsteady aerodynamics of rigid wings, forced oscillations (no flutter)
 - Rectangular Supercritical Wing (RSW), Benchmark Supercritical Wing (BSCW), HIRENASD
- AePW-2 (San Diego, 2016)
 - <u>https://nescacademy.nasa.gov/workshops/AePW2/public/</u>
 - BSCW flutter: an easy case (Mach 0.74, 0 deg. AoA), and a really hard blind case (Mach 0.85, 5 deg. AoA)
- AePW-3 (National Harbor, 2023)
 - <u>https://nescacademy.nasa.gov/workshops/AePW3/public/</u>
 - Split into four distinct working groups

AePW-3 Working Groups

- 1. High Angle Working Group (HAWG)
 - Led by Pawel Chwalowksi (NASA)
 - Continuation of AePW-2: focus on BSCW transonic flutter and buffet
- 2. Large Deflection Working Group (LDWG)
 - Led by Markus Ritter (DLR)
 - Focus on large structural deflections of a subsonic high aspect ratio wing (Pazy wing, Technion)
- 3. Flight Test Working Group (FTWG)
 - Led by Jeff Ouellette (NASA)
 - Focus on body freedom flutter mechanisms of the X-56A
- 4. High Speed Working Group (HSWG)
 - Led by Eric Blades (ATA)
 - Focus on supersonic and hypersonic FSI: RC19 test case (AFRL), and the HyMax test case (UNSW)

- We will have two joint working groups with DPW-8:
 - 1. Static Aeroelastic Deformation Group
 - 2. Unsteady Aerodynamic and Buffet Group
- What working groups do we want entirely under the AePW umbrella?
 - Which of the four AePW-3 WGs has enough momentum to continue on for another cycle (need workshop participation and leadership)?
 - Is there interest in starting new working groups, and/or looking at new configurations?
 - Are there efforts that are of interest to the community, but cannot be completed in time for the AePW-4 workshop (summer 2025)?
- If there are no AePW-only WGs for AePW-4, that's OK...

High Angle Working Group

- Large spread in BSCW flutter predictions from AePW-3 (though not as bad as AePW-2)
- What have we learned?
- We need more experimental data: more flutter data points, and more onand off-body flow data at each flutter point

IePI

The Future of the HAWG-Flutter (1)

- Rather than focus on isolated flow conditions for flutter, could/should we focus on sweeps?
 - Mach-sweeps: transonic flutter dips
 - AoA-sweeps
- Positives:
 - Running cases that gradually span from "easy" to "hard" may help us better understand why our solvers gradually start to fail
- Negatives:
 - Increases the workload on each WG participant
 - What test cases have enough experimental flutter data to qualify?

The Future of the HAWG-Flutter (2)

- Existing 1990's BSCW data is too sparse
- BSCW will be re-tested in the TDT (currently scheduled for early CY 2025)
 - Should we run blind computations in anticipation of that data?
- We are working to design/fab an aeroelastic CRM (currently on the TDT schedule for sometime in CY 2026)
 - May provide another nice tie-in to DPW
 - Should we run blind computations in anticipation of that data?

Alternative Transonic Flutter Datasets?

- Benchmark-0012 Wing?
 - Mach- and AoA-sweep TDT flutter data from the 1990's
 - Very little steady/unsteady pressure data
- MAVRIC?
 - A semispan wing/body tested numerous times in the TDT
 - Will be partially re-fabbed and re-tested in early CY 2024
 - Goal is to map out flutter dips at multiple AoA
 - No pressure data
- Other cases?

200

Transonic Control Surface Aerodynamics

- Transonic flows over a gapped control surface is a big current challenge
 - Steady or unsteady control surface rotations
 - Rigid or aeroelastic wing
 - Open- or closed-loop
- BACT wing (Benchmark Active Controls Technology)
 - Yet another benchmark model tested in the TDT in the 1990's
 - Relatively few CFD comparisons since then
- In theory there is a ton of BACT data (rigid/flexible mounts, different control surface combinations, ASE, etc.)...
 - ...but the exact condition and fidelity of the dataset is uncertain

AePW

The Future of the HAWG-Buffet

- In addition to the flutter case, AePW-3 had also considered a buffet case of a rigid BSCW model:
 - Mach 0.8, 5 deg. AoA: this AoA is well-beyond the buffet onset condition
- Similar to flutter, buffet predictions may benefit from a more granular view:
 - Can we predict the buffet onset boundary: AoA vs Mach?
 - Can we predict buffet growth beyond the onset boundary?
 - What test cases have enough experimental buffet data to qualify?
- The rigid BSCW will be re-tested in the TDT (currently scheduled for early CY 2025)
 - Should we run blind computations in anticipation of that data?
- Alternatively, is the joint-DPW buffet activity enough buffet research for one workshop?

Open Discussion

The Large Deformation Working Group

- Pazy wing: AoA-dependent hump-mode flutter boundary driven by geometric nonlinearities
- Aerodynamics are mostly linear: CFD can be used, but not required
- Reasonable agreement between the participants' results and the experimental data
- This WG was the most popular of the 4 WGs

Aepn/

The Future of the LDWG

- New leadership is needed for the LDWG
- Gust response: Christoph Mertens (Delft / NLR) has obtained Pazy response data due to a periodic gust
 - Is this the most straight-forward extension of the AePW-3 / LDWG activity? Same configuration, (mostly) the same modeling tools, but new physics
- Pazy LCO response data from Technion
 - Some post-flutter data exists (and more could be obtained?)
 - Subcritical LCO possibly driven, in part, by dynamic stall
 - Another interesting/useful extension from AePW-3, but: how many participants have the tools for dynamic stall?
- Technion is also working on a swept Pazy wing
 - Stronger aeroelastic coupling than the unswept version

Open Discussion

The Flight Test Working Group

- Body freedom flutter mechanisms of the X-56A
 - Rigid body modes are a challenge for the CFD solvers
- Comparisons via GAFs, aerodynamic work/energy, and root-locus plots for 4 different fuel states
- Reasonable agreement with test data, though flutter speed is over-predicted
- Simplified X-56A geometry used here: no landing gear, no engines

IeP

The Future of the FTWG

- Is there additional X-56A data that could/should be looked at for AePW-4?
 - Was there enough AePW-3 participation to warrant a continuation?
- Possible alternative configurations that would fit under FTWG (though they could also fit under LDWG, or some newly-branded WG):
 - Michigan's EASE configuration: semi-span, high-aspectratio model on a PAPA support
 - There is a build-up of physics, culminating in ASE load alleviation
 - Technion and Michigan's A3TB configuration: windtunnel and flight test versions
 - The linear structure may limit interest in this case
 - The flight test version experienced BFF/LCO, but as with Pazy: how many workshop participants can handle dynamic stall?

Very flexible wing EASE configuration: courtesy U. Michigan

A3TB configuration: courtesy Technion

Open Discussion

The High Speed Working Group

- RC-19: Mach-2 flow through a wind tunnel with a nonlinear flexible panel
 - Different panel temperatures, cavity pressures, and wedge angles lead to different responses (LCO, chaos)
 - This is a very challenging problem which is very sensitive to the various inputs
- HyMAX: Mach-6 flow over a flexible plate, with shock impingement
 - 2 deg. wedge (laminar), 10 deg. wedge (transitional), oscillating wedge (reach case)
 - Linear structural response
 - Relatively few participants have considered this case, to-date

IePI

- New leadership is needed for the HSWG
- This working group got off to a relatively late start, and had relatively fewer results at AePW-3, compared to the other WGs
- A mini-workshop for this effort was held the day before SciTech
- Continue on with this WG through to AePW-4?
 - Same test cases? New data from the same test cases? Entirely new test cases?
- Relationship with the AIAA High Speed FSI DG?

- Ideally, we would settle on the AePW-4 WGs in Q1 of 2024: configuration(s), leadership, test-cases, etc.
- In addition, settle on any WGs that are of interest to the community, but would not be ready in time for AePW-4 (summer 2025)
- Either way: monthly meetings for each WG
 - Monthly (bi-monthly?) meetings for the entire AePW community
- If you do not receive AePW emails, and want to, please ping me:
 - bret.k.stanford@nasa.gov