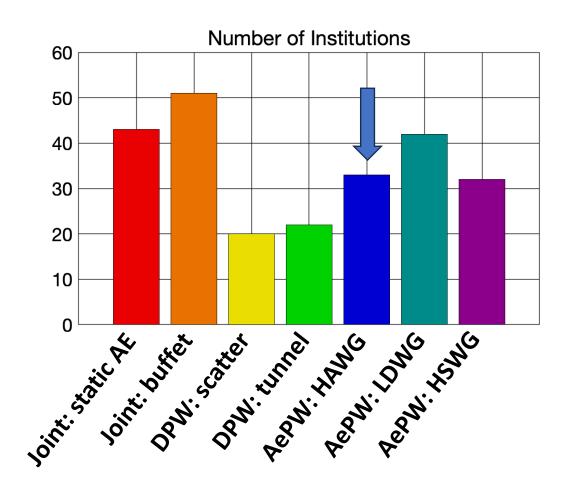


June 13, 2024 Pawel Chwalowski Pawel.Chwalowski@nasa.gov

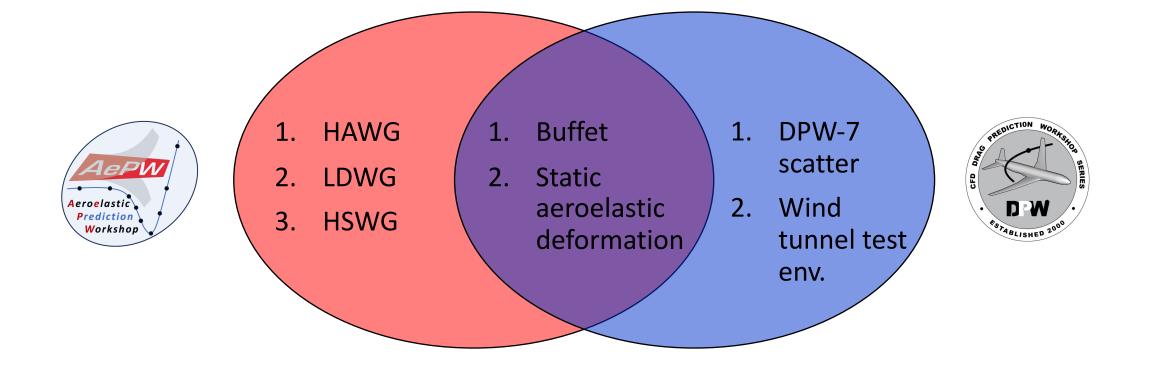
- Review May 9th kickoff meeting
- CAD, Wing configuration, Grids, Computational domain, Flow conditions, etc.
- BSCW FUN3D DDES results at Mach 0.8, 5° (time permitting)

 July 11th meeting: BSCW Reduced-order model flutter results at AoA = 0°, 3°, 5° presentation by Walt Silva

- An open and impartial forum to assess and evaluate the current stateof-the-art and state-of-the-practice in computational aeroelastic modeling
 - How effective are current solvers at predicting aeroelastic physics critical to aircraft analysis and design?
 - How can we understand the reasons for why our solvers may fail?
 - Can we establish best-practices for using aeroelastic solvers?
 - Can we establish uncertainty bounds for computational results?
 - Can we specify requirements on future validation experiments?
- What computational and experimental areas of research need further development?

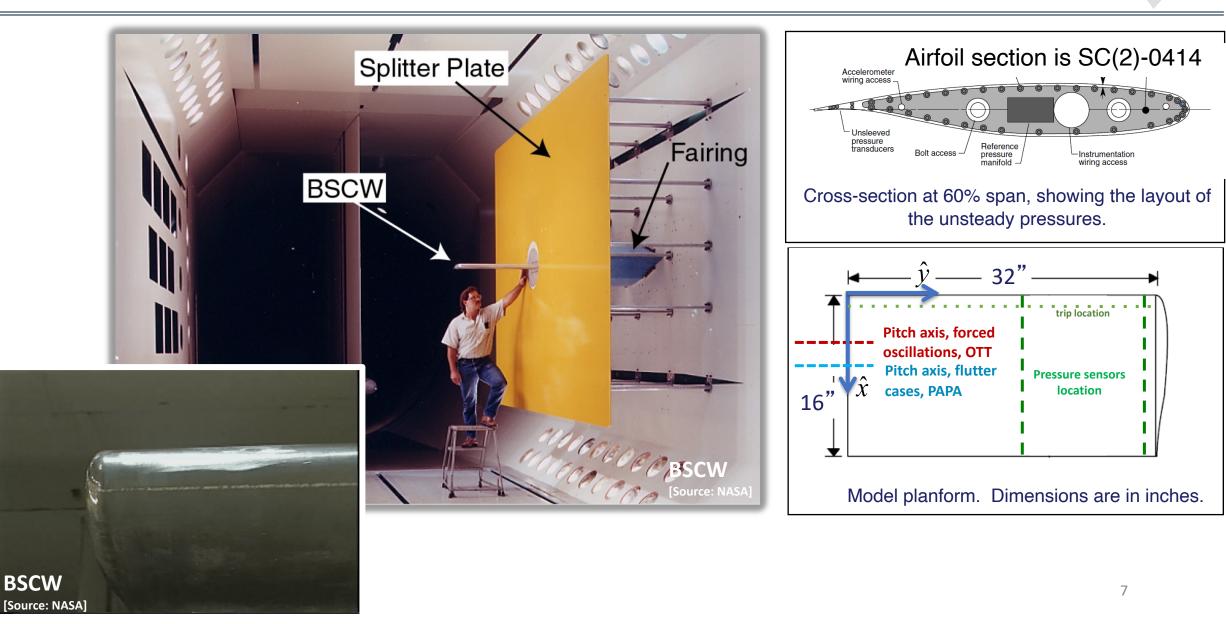


- Kirk Brouwer, AFRL (High-Speed WG)
- Carlos Cesnik, University of Michigan
- Pawel Chwalowski, NASA LaRC (High-Angle WG)
- Adam Jirasek, USAFA
- Jeff Ouellette, NASA LaRC
- Rafael Palacios, Imperial College London (High-Deformation WG)
- Daniella Raveh, Technion
- Markus Ritter, DLR
- Walt Silva, NASA LaRC
- Bret Stanford, NASA LaRC (AePW-4)


Transition to AePW-4; Joint Working Groups with DPW-8

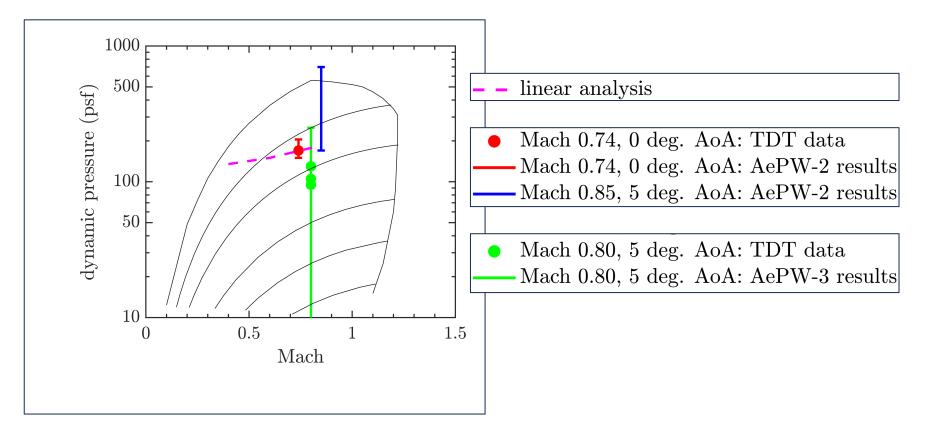
https://aiaa-dpw.larc.nasa.gov

Joint workshop will take place at AIAA Aviation 2026



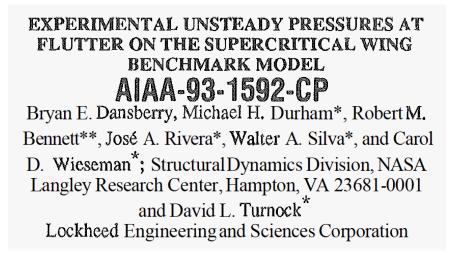
Venn Diagram of Working Groups

Aepn


High-Angle WG: BSCW Wing Configuration

Aepn

- \circ AePW-1:
 - Steady-rigid and forced-oscillation cases at Mach 0.85, AoA = 5° \checkmark
- \circ AePW-2:
 - Forced-oscillation case at Mach 0.70, AoA = 3° \checkmark
 - Flutter prediction at Mach 0.74, AoA = 0° \checkmark
 - Unsteady-rigid, forced-oscillation, and flutter cases at Mach 0.85, 5° \checkmark \checkmark \checkmark
- \circ AePW-3:
 - Flutter prediction at Mach 0.80, AoA = 5° \checkmark
 - Shock-buffet case at Mach 0.80, AoA = $5^{\circ} \checkmark$
 - AIAA Paper 2024-0417 and 2024-0418


AePW-3: What have we learned?

- Large spread in BSCW flutter predictions from AePW-3 (though not as bad as AePW-2)
- We need more experimental data: more flutter data points, and more on-and offbody flow data at each flutter point

eP

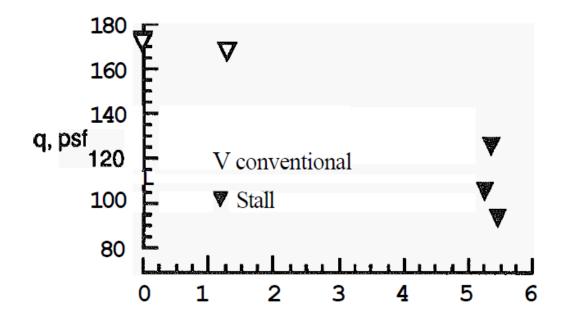


Figure 9. Stall flutter boundary in R-12 at M = 0.80.

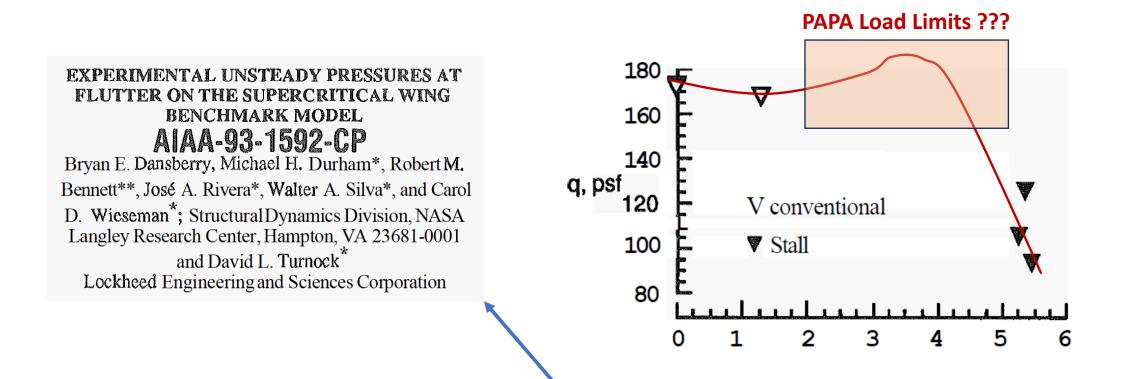


Figure 9. Stall flutter boundary in R-12 at M = 0.80.

Future Experiment: Spring 2025

- Unsteady Pressure Sensitive Paint
- Flutter Stopper
- Two rows of pressure sensors + several on splitter plate
- PIV

٠

• Flutter and buffet data at Mach, Q, AoA range

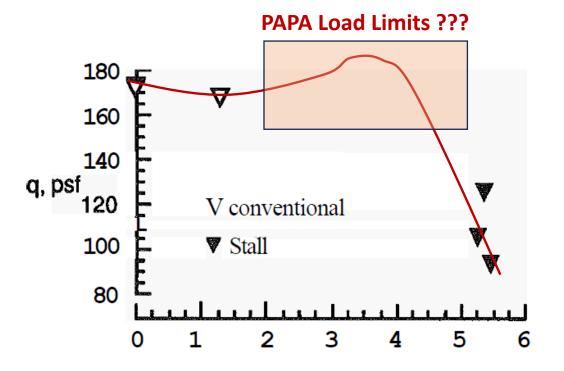
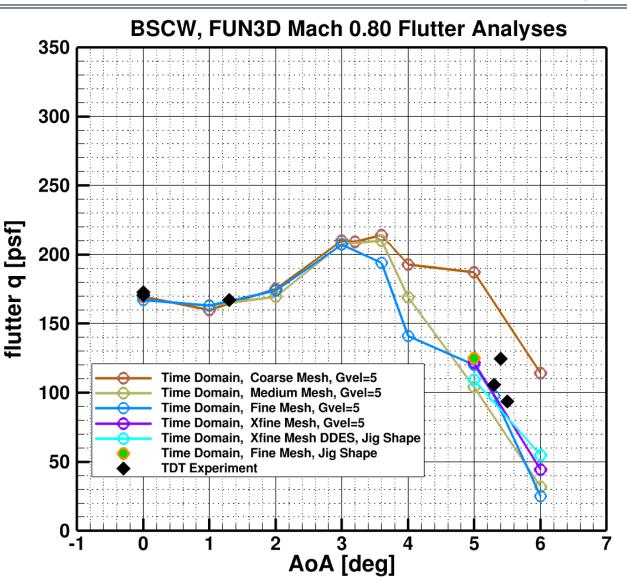
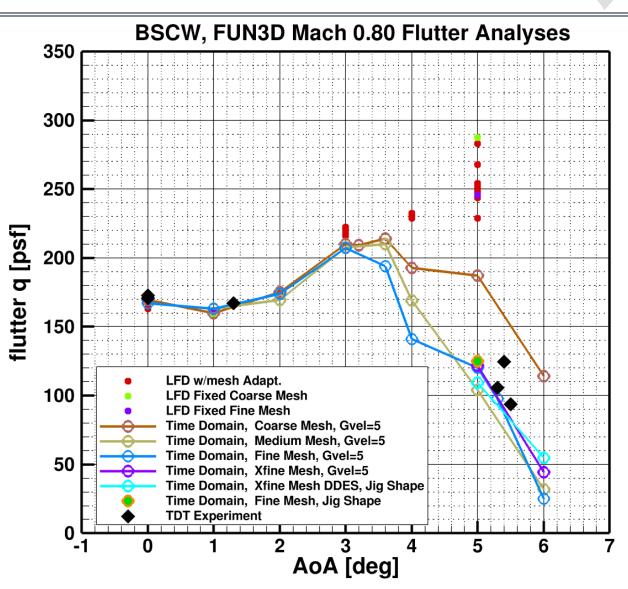



Figure 9. Stall flutter boundary in R-12 at M = 0.80.

Current Computational Effort w/FUN3D ...trying to cover different methods...

- FUN3D URANS time domain analysis:
 Rigid steady → Static aeroelastic →
 Dynamic aeroelastic (with initial excitation using Gvel=5)
- Working on:
 Rigid steady → Dynamic aeroelastic (Jig shape)
- Working on:
 Scale-resolving DDES FUN3D time domain analysis:
 Rigid steady → Static aeroelastic →
 Dynamic aeroelastic (with initial excitation using Gvel)
- Working on:
 Adding URANS solutions for Xfine Mesh



Current Computational Effort w/FUN3D

...trying to cover different methods...

- FUN3D <u>Linearized Frequency Domain (LFD)</u>:
 Rigid steady → Static aeroelastic → LFD
 - LFD + Mesh Adaptation

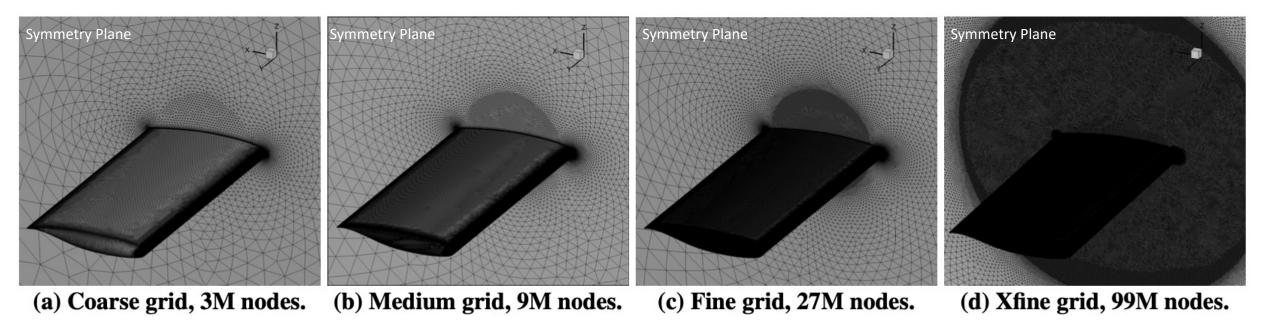
- Working on: Adding angle-of-attack sweeps
- ROM

1epn

○ Mandatory

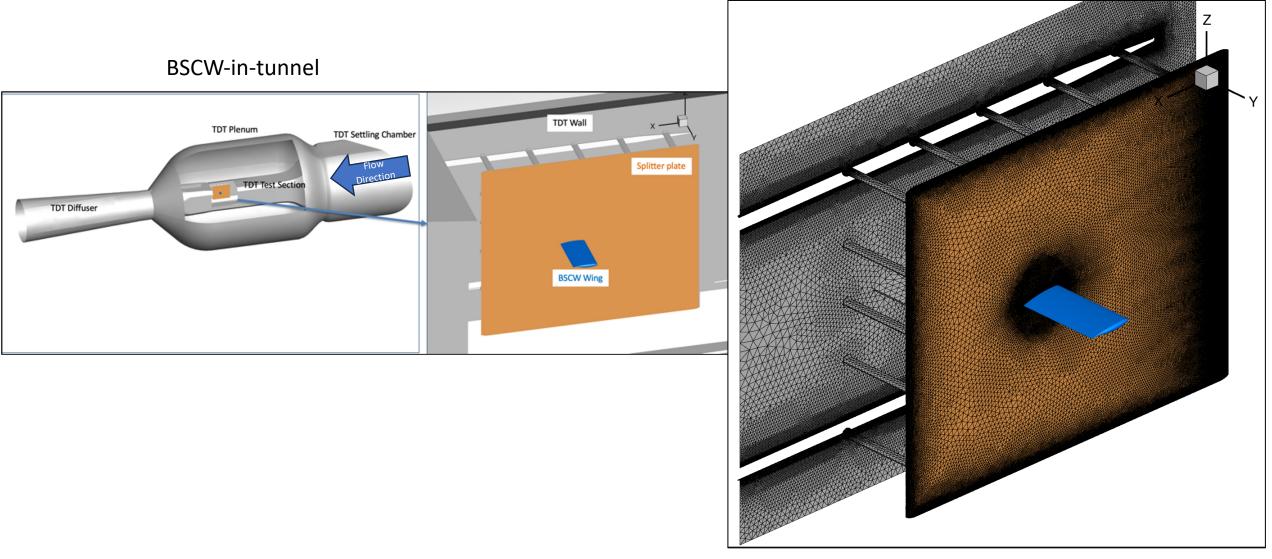
- Flutter prediction at Mach 0.80 and angle-of-attack sweep: 0° 6°
- \circ Optional
 - Flutter prediction at Mach 0.78, 0.76, 0.74 and angle-of-attack 3°

Schedule/Timeline/Logistics


- Monthly meetings on second Thursday of each month at 10 am EDT
- IFASD 2024: 17 21 June 2024, The Hague Bret Stanford
- AIAA Aviation 2024: Las Vegas, NV Bret Stanford
- AIAA SciTech 2025: Orlando, FL (?)
- Spring 2025: New BSCW Experiment (Data release ?)

• AIAA Aviation 2026: DPW-8 and AePW-4 Workshop

CAD, Grids, Computational domain, Flow conditions,....


- On AePW-2 website: <u>https://nescacademy.nasa.gov/workshops/AePW2/public/</u> under <u>Analysts Information</u> you can download BSCW iges file. Gridding guidelines adopted from the DPW are also listed.
- Note that the iges file consists of BSCW wing mounted on a splitter plate. But...
- For AePW-1, AePW-2, and AePW-3, we assumed wing-only that is attached to a plane of symmetry.
- Several grids are also available for download. But do we need to build and provide new grids?
- BSCW structural model is described, and NASTRAN files are available.

CAD, Grids, Computational domain, Flow conditions,....

Node centered.... 'nc' Cell centered.... 'cc'

Computational Domain: Wing-only vs. BSCW-in-tunnel

AePW-3 Summary Paper, <u>https://doi.org/10.2514/6.2024-0418</u>

Table 2 BSCW flow conditions: Mach 0.8 with range of dynamic pressure (q); chord Reynolds number (Re_c) ; Reynolds number per foot (Re); velocity (V); speed of sound (a); static temperature, (T_{static}) ; density (ρ) ; ratio of specific heat (γ) ; viscosity (μ) ; Prandtl number (Pr); total pressure (H); and static pressure (P).

Mach	0.799	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.801	0.801
q [psf]	10.02	25.00	35.00	50.00	75.00	100.00	134.00	143.00	152.00	168.80	200.00	225.00	250.00
Re _C	237461	592224	829213	1184801	1777732	2371336	3178880	3392751	3606668	4006103	4748658	5343835	5939368
Re [1/ft]	178096	444168	621910	888601	1333299	1778502	2384160	2544563	2705001	3004577	3561493	4007876	4454526
V [ft/s]	440.45	440.63	440.59	440.51	440.39	440.21	440.05	440.00	439.96	439.88	439.70	439.58	439.46
<i>a</i> [ft/s]	551.08	550.94	550.85	550.71	550.48	550.25	549.94	549.86	549.78	549.62	549.34	549.11	548.88
$T_{static} [^{\circ}F]$	80.87	80.83	80.83	80.82	80.81	80.80	80.78	80.77	80.77	80.76	80.74	80.73	80.71
$ ho$ [slug/ft 3]	0.000103	0.000258	0.000361	0.000515	0.000774	0.001032	0.001384	0.001477	0.001571	0.001745	0.002069	0.002329	0.002589
γ	1.1121	1.1122	1.1123	1.1124	1.1126	1.1128	1.1131	1.1131	1.1132	1.1133	1.1136	1.1138	1.1139
μ [lb-sec/ft ²]	2.555e-07	2.555e-07	2.555e-07	2.555e-07	2.555e-07	2.555e-07	2.554e-07						
Pr	0.68394	0.68404	0.68410	0.68419	0.68435	0.68450	0.68471	0.68477	0.68483	0.68493	0.68513	0.68528	0.68544
H [psf]	40.00	99.72	139.61	199.45	299.18	399.00	534.69	570.61	606.53	673.59	798.21	898.01	997.83
P [psf]	28.21	70.32	98.45	140.64	210.97	281.37	377.05	402.38	427.71	475.00	562.87	633.25	703.64
		-				•		•					

Mach 0.74

Mach	0.74	0.74	0.74	0.74	0.74	0.74	0.74	0.74
q [psf]	50.00	75.00	100.00	134.00	143.00	152.00	168.80	200.00
Re _C	1275964	1914959	2554246	3423935	3654400	3884927	4315413	5115471
<i>Re</i> [1/ft]	956973	1436219	1915684	2567951	2740800	2913695	3236560	3836603
V [ft/s]	407.58	407.37	407.23	407.09	407.04	406.99	406.89	406.71
<i>a</i> [ft/s]	550.82	550.56	550.30	549.93	549.84	549.74	549.56	549.23
$T_{static} [^{\circ}F]$	83.60	83.59	83.58	83.55	83.55	83.54	83.54	83.52
$ ho$ [slug/ft 3]	0.000602	0.000904	0.001206	0.001617	0.001726	0.001836	0.002039	0.002418
γ	1.1116	1.1119	1.1121	1.1124	1.1125	1.1125	1.1127	1.1130
μ [lb-sec/ft ²]	2.564E-07	2.563E-07						
Pr	0.68325	0.68343	0.68360	0.68385	0.68391	0.68398	0.68410	0.68432
H [psf]	221.92	332.99	444.03	594.95	634.93	674.92	749.56	888.22
P [psf]	164.50	246.83	329.14	441.01	470.65	500.29	555.62	658.40

Mach 0.76

Mach	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
q [psf]	50.00	75.00	100.00	134.00	143.00	152.00	168.80	200.00
Rec	1245425	1868520	2492233	3341185	3566044	3790959	4210646	4991103
<i>Re</i> [1/ft]	934069	1401390	1869175	2505889	2674533	2843219	3157984	3743327
V [ft/s]	418.22	418.15	418.01	417.82	417.78	417.73	417.67	417.50
<i>a</i> [ft/s]	550.43	550.18	549.93	549.58	549.49	549.40	549.23	548.92
$T_{static} [^{\circ}F]$	82.72	82.70	82.69	82.67	82.67	82.66	82.65	82.63
$ ho$ [slug/ft 3]	0.000572	0.000858	0.001145	0.001535	0.001639	0.001742	0.001936	0.002295
γ	1.1118	1.1120	1.1122	1.1125	1.1125	1.1126	1.1128	1.1130
μ [lb-sec/ft ²]	2.560E-07	2.559E-07						
Pr	0.68360	0.68377	0.68394	0.68417	0.68423	0.68430	0.68441	0.68463
H [psf]	213.86	320.74	427.68	573.16	611.67	650.19	722.01	855.54
P [psf]	155.96	233.91	311.91	418.00	446.09	474.18	526.56	623.94

Mach 0.78

Mach	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
q [psf]	50.00	75.00	100.00	134.00	143.00	152.00	168.80	200.00
Rec	1216355	1824869	2433950	3262935	3482495	3702106	4112185	4874236
<i>Re</i> [1/ft]	912266	1368652	1825462	2447201	2611871	2776579	3084139	3655677
V [ft/s]	428.90	428.83	428.70	428.53	428.48	428.43	428.35	428.19
<i>a</i> [ft/s]	550.03	549.79	549.55	549.22	549.13	549.05	548.88	548.58
$T_{static}[^{\circ}F]$	81.82	81.80	81.79	81.77	81.76	81.76	81.75	81.73
ho [slug/ft ³]	0.000544	0.000816	0.001088	0.001460	0.001558	0.001656	0.001840	0.002182
γ	1.1119	1.1121	1.1123	1.1125	1.1126	1.1127	1.1128	1.1131
μ [lb-sec/ft ²]	2.556E-07	2.556E-07	2.556E-07	2.556E-07	2.556E-07	2.556E-07	2.555E-07	2.555E-07
Pr	0.68396	0.68413	0.68429	0.68451	0.68457	0.68463	0.68474	0.68495
H [psf]	206.41	309.56	412.78	553.16	590.33	627.50	696.88	825.74
P [psf]	148.06	222.05	296.08	396.78	423.44	450.10	499.87	592.30

June 13, 2024 Pawel Chwalowski Pawel.Chwalowski@nasa.gov