
Outline (1/2)

I Team: A. Da Ronch, G. Immordino, University of
Southampton, M. Righi, ZHAW and ETH,

I 70 random (LHS) samples in the space:

0.74 < M < 0.84, 0 < α < 5◦,

I CFD indicial responses for each of the 70 points (pitch and
plunge ”step”),

I Identification of Volterra linear and quadratic kernels,

I NN to reconstruct the kernel coefficients for 3600 uniformly
distributed samples in the same (M, α),



Outline (2/2)

I definition of a state space model with linear kernel, dofs: pitch
and plunge, m angle of attack values, (m = memory depth),

I assessment of flutter dynamic pressure qf for 3600 (M, α)
combinations, (eigenvalue analysis as function of q),

I estimate of static elastic rotation θ to obtain the wind off
angle of attack α0, to match WT results. We did this with
linear and quadratic V kernels,

α = α0 + θ, 7−→ α0 = α− θ,

I α = angle of attack, α0 = AoA wind off, θ = elastic rotation,



Identification of the Volterra kernels

I Approach by Prof. Dowell (for instance AIAA Journal, Vol.
60, No. 3, March 2022, Levin, Bastos, Dowell, Convolution
and Volterra Series Approach to Reduced-Order Modeling of
Unsteady Aerodynamic Loads),

I The linear kernel is identified separately based on a ”small”
amplitude signal (0.5◦ step or smoothed step),

I The higher order kernels are identified as ”corrections” to the
linear response (1.0◦ step or smoothed step),

I we (should) identify pitch and plunge separately (ongoing).



Kernels reconstruction M = 0.745, α = 2.105◦ (1/2)



Kernels reconstruction M = 0.829, α = 0.4277◦ (2/2)



Stability Analysis

I State-space model for pitch, plunge and m past AoA values,

I Eigenvalue analysis in a range of dynamic pressure,

I Alternatively, GAF from indicial responses, and then p − k ,



Isogai flutter test case, Euler, RANS
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Figure 1: Flutter index NACA 64a010 (Isogai).



Dynamic stability BSCW, qf

Figure 2: qf



Dynamic stability BSCW, qf

Figure 3: ...



Dynamic stability BSCW

Figure 4: α sweep



Dynamic stability BSCW

Figure 5: Mach sweep



Static elastic rotation θ(M , α) for all (M , α) samples, at qf

Figure 6: ...



Plot of qf as function of M and α0 (not α!), i.e.
qf (M , α) = qf (M , α0(M , α)), whereas α0 = α− θ

Figure 7: ...



Plot of qf as function of M and α0 (not α!), i.e.
qf (M , α) = qf (M , α0(M , α)), whereas α0 = α− θ

Figure 8: ...



Plot of qf as function of M and α0 (not α!), i.e.
qf (M , α) = qf (M , α0(M , α)), whereas α0 = α− θ

Figure 9: ...



Plot of qf as function of M and α0 (not α!), i.e.
qf (M , α) = qf (M , α0(M , α)), whereas α0 = α− θ

Figure 10: ...



Back-Up



State-space model with linear Volterra kernel

rn+1 = Arn, (1)

where r includes the dynamic (x) and aerodynamic θ state
variables and A is the matrix:

A =

[
Ad B
C H

]
, (2)



State-space system

H =


0 0 0 . . . 0 0
h1 0 0 . . . 0 0
0 h2 0 . . . 0 0
. . .
0. 0 0 . . . hm 0

 , (3)

αn+1 is the angle of attack at time n + 1, B is the matrix:

B = qS


0 0 . . . 0
0 0 . . . 0

hCl
1 hCl

2 . . . hCl
m

hCm
1 hCm

2 . . . hCm
m

 . (4)

and C links the angle of attack to the state variables.


