BSCW High-Angle of Attack Computations Using KESTREL and AEROM

Walt Silva

Aeroelasticity Branch

NASA Langley Research Center

July 11, 2024

AePW-4 High Angle Working Group Meeting

Outline

- Benchmark SuperCritical Wing (BSCW), Aeroelastic Prediction Workshop (AePW)
- Background
- AEROM
- Results
 - Alpha=0, 1, 3, and 5 degs (skip alpha=1 deg; similar to alpha=0 deg)
 - Amplitudes = 0.04, 0.01, 0.08, and 0.001 (modal)
 - Comparison of full solution GAFs vs ROM GAFs (error quantification)
 - Root locus
 - Comparison of full solution transients vs ROM transients (at a specified Q)

Benchmark Supercritical Wing (BSCW)

- Chosen as a challenging test case, flow-wise, but simple geometry
 - Strong shock with suspected shockinduced separated flow
- Some preliminary assessments from AePW
 - Computational methods had difficulty producing converged solutions due to flow field complexity
 - Complex flow field also observed in experimental data; Largest magnitude of dynamic behavior appears to represent shock oscillations
 - CFD solutions vary widely, even for static solution;

M=0.85, Re_c=4.49 million, test medium: R-134a, $\alpha = 5^{\circ}, \theta = 1^{\circ}, \text{ freq } 1 \& 10 \text{ Hz}$

Likely plan of action:

- Form technical working group of BSCW analysts
- Extensive study of available experimental data; characterize different flow phenomena
- Benchmark against more benign cases- lower Mach number, lower angle of attack
- Analyze the static (unforced) problem using time-accurate evaluation methods
- Study of time convergence criteria

From AePW-1 Debrief

AePW-2 Summary of Results

- At Mach 0.74, α = 0°
 - Small variation in computational results
 - Match the experimental results well
 - Match the linear results well
- At Mach 0.85, α = 5°
 - Significant variation in predictions
 - No experimental data for comparison

Background

- Application of KESTREL and KESTREL/AEROM to BSCW wing
- At M=0.74, alpha=0 deg, KESTREL, KESTREL/AEROM, FUN3D, and FUN3D/AEROM <u>all compare nearly exactly with data</u>
- At M=0.85, alpha=5 deg, large flow separation/unsteadiness; very challenging problem
- Large variance from one code to another at this condition; differences between KESTREL and FUN3D
- Goal of this analysis: evaluate application of AEROM using KESTREL at M=0.80 and alpha=0, 1, 3, and 5 deg (similar unsteadiness to M=0.85) <u>using multiple amplitude excitations</u> (Walsh functions)
- Follow-up with investigation of code-to-code comparisons

- Fixed-wing product in CREATE-Air Vehicles
- High-fidelity simulation tool
 - Full spectrum of flight conditions and missions
 - Incompressible to hypersonic
 - Cruise, maneuvering, take-off/landing, refueling, store carriage and release, precision air-drop, test facility modeling, and more...
 - Full spectrum of aircraft/weapons types
 - Fighter, bomber, tanker, cargo/transport, UAV/UAS, munitions
 - Coupled physics: aerodynamics, thermochemistry, structural dynamics, propulsion, flight controls, separation/contact/collision, 6-DoF motion w/ generalized constraints, aero-heating
 - Easy for users to learn, use, customize, and extend
 - "Simple things are easy, complex things are possible."
- Thanks to Dr. Steven Lamberson for this slide

Unsteady Aerodynamic State-Space ROM

BSCW Application (KESTREL), Two modes

*.fmh file

*.modes file

- Intentional accounting for nonlinearity:
 - Input amplitude variation (<u>amplitude-dependent nonlinearity</u>)
 - Simultaneous inputs (capture nonlinear cross-terms missed by one-at-a-time inputs)

Error Minimization (Unsteady Aerodynamics)

Aeroelastic Simulation ROM (Simulink Model)

- Includes Unsteady Aero ROM and Structural Dynamic ROM
- A MATLAB-based replica of the CFD aeroelastic solution process
- Used to compare ROM responses at <u>any</u> dynamic pressure with full KESTREL or FUN3D solutions
- Computes generalized coordinates and GAFs
- Can be used for static and dynamic AE solutions

Aeroelastic Root Locus Plot Using Aeroelastic Simulation ROM

System Identification for MIMO Stability & Control Systems

"Characterizing Aerodynamic Damping of a Supersonic Missile with CFD", Shelton (AF), Martin (AF), Silva (NASA), SciTech 2018

Pitch Moment Damping

Walsh Functions vs Harmonic Motion and Reference

13

Walsh Function Amplitudes and Alphas Coarse Mesh

Modal Amp/Alpha (deg)	0 (K)	1	3 (K)	5 (K)
0.04	M8A0a	M8A1a	M8A3a	M8A5a
0.01	M8A0b	M8A1b	M8A3b	M8A5b
0.08	M8A0c	M8A1c	M8A3c	M8A5c
0.001	M8A0d	M8A1d	M8A3d	M8A5d

K = comparison with full KESTREL solution available or underway; using 'Venkat' limiter

```
KESTREL Solutions: Alpha = 0 deg, Q = 100 psf, Initial Modal Velocity = 5
Alpha = 3 deg, Q = 100 psf, Initial Modal Velocity = 5
Alpha = 5 deg, Q = 50 psf, 130 psf, Initial Modal Velocity = 5
```

NAS CPU Cost

Single ROM solution: 10K steps, 240 cores, <u>9hrs 45min (set up for high alpha case; shorter duration for benign cases)</u> Full Solution <u>per Q</u>: 15K steps, 240 cores, <u>53 hrs 04min (~5.5 cycles)</u>

Alpha = 0 deg

M8A0a – ROM/KESTREL GAFs

M8A0a – ROM/KESTREL Root Locus

M8A0a – ROM/KESTREL Root Locus

Qf = 178.8 psf

M8A0a – ROM Responses (SIMULINK)

Q = 129.6 psf

Q = 187.2 psf

M8A0a – ROM/KESTREL Responses, Q=100 psf

Mode 1

Mode 2

M8A0a – ROM/KESTREL Responses, Q=100 psf

Mode 1

Mode 2

M8A0b – ROM/KESTREL Root Locus

M8A0c – ROM/KESTREL Root Locus

M8A0d – ROM/KESTREL GAFs

a .04
b .01
c .08
d .001

M8A0d – ROM/KESTREL Root Locus

Alpha = 3 deg

.04

а

M8A3a – ROM/KESTREL Root Locus

M8A3b – ROM/KESTREL Root Locus

M8A3c – ROM/KESTREL Root Locus

M8A3c – ROM Responses

Q = 172.8 psf

Q = 187.2 psf

M8A3d – ROM/KESTREL Root Locus

M8A3d – ROM Responses

Q = 216 psf

Alpha = 5 deg

M8A5a – ROM/KESTREL GAFs

a .04
b .01
c .08
d .001

M8A5a – ROM/KESTREL Root Locus

Q = 50 psf, Mode 1

Frequency

Time

Q = 50 psf, Mode 2

Frequency

Q = 130 psf, Mode 1

Frequency

Time

Q = 130 psf, Mode 2

Frequency

Time

M8A5b – ROM/KESTREL GAFs

M8A5b – ROM/KESTREL Root Locus

M8A5c – ROM/KESTREL GAFs

M8A5c – ROM/KESTREL Root Locus

M8A5d – ROM/KESTREL GAFs

M8A5d – ROM/KESTREL Root Locus

ROM/KESTREL Root Locus Plot Comparison M=0.80, alpha=0, 5 deg

Alpha=0 deg

Alpha=5 deg

Conclusions (Thus Far)

- At benign conditions (alpha=0 deg), all ROMs provide same result; gratifying, as it indicates linearized flow dynamics
- As alpha is increased, variations between the different ROMs (amplitudes) start to become obvious
- At alpha=5 deg, there are noticeable differences between the ROMs, indicating that the higher-amplitude ROMs do a better job (at this condition) of predicting the aeroelastic responses at multiple dynamic pressures
- So far, ROM Flutter Q=179 psf; KESTREL Flutter Q=168 psf (~6.5%)
- Will continue analyses at AePW-4 recommended conditions.