Two-Dimensional Aeroelastic Flutter-Onset and Limit Cycle Oscillation Computations for the NASA Benchmark Supercritical Wing Configuration

Jeffrey P. Thomas and Earl H. Dowell

Duke University, Durham, NC 27708-0300

December 12, 2024

Objectives and Approach

- Objective #1: Can a two-dimensional computational model predict results in the vicinity of the three-dimensional experimental results for the NASA Benchmark Super-critical Wing (BSCW) configuration?
- Objective #2: What sort of predicted aeroelastic Limit Cycle Oscillation (LCO) trends will the two-dimensional computational model yield? i.e., sub-critical or super-critical LCO response?
- Objective #3: Does the two-dimensional computational model predict transonic flow buffet?

Approach: A nonlinear frequency domain Harmonic Balance (HB) based Computational Fluid Dynamic (CFD) and aeroelastic solver, which allows for the direct computation of aeroelastic LCO response curves.

Airfoil Aeroelastic Configuration Governing Equations

$$\begin{split} R_{1} &= \bar{\alpha}_{0} - \alpha_{e_{0}} - \frac{2V^{2}}{\pi r_{\alpha}^{2}} \bar{c}_{m_{0}} \\ R_{2} &= \left\{ \frac{\operatorname{Re}(\bar{c}_{I_{1}})}{\pi \tilde{\alpha}_{1}} - \frac{1}{4} \mu \tilde{\omega}^{2} \left[\frac{m_{h}}{m} \operatorname{Re}\left(\frac{\bar{h}_{1}}{\bar{\alpha}_{1} b} \right) + x_{\alpha} \right] \right\} V^{2} \\ &- \sqrt{\mu} \bar{\omega} \zeta_{h} \left(\frac{\omega_{h}}{\omega_{\alpha}} \right) \operatorname{Im}\left(\frac{\bar{h}_{1}}{\bar{\alpha}_{1} b} \right) V + \left(\frac{\omega_{h}}{\omega_{\alpha}} \right)^{2} \operatorname{Re}\left(\frac{\bar{h}_{1}}{\bar{\alpha}_{1} b} \right) \\ R_{3} &= - \left\{ 2 \frac{\operatorname{Re}(\bar{c}_{m_{1}})}{\pi \bar{\alpha}_{1}} + \frac{1}{4} \mu \tilde{\omega}^{2} \left[x_{\alpha} \operatorname{Re}\left(\frac{\bar{h}_{1}}{\bar{\alpha}_{1} b} \right) + r_{\alpha}^{2} \right] \right\} V^{2} \\ &+ r_{\alpha}^{2} \\ R_{4} &= \left[\frac{\operatorname{Im}(\bar{c}_{I_{1}})}{\pi \bar{\alpha}_{1}} - \frac{1}{4} \mu \tilde{\omega}^{2} \frac{m_{h}}{m} \operatorname{Im}\left(\frac{\bar{h}_{1}}{\bar{\alpha}_{1} b} \right) \right] V^{2} \\ &- \sqrt{\mu} \bar{\omega} \zeta_{h} \left(\frac{\omega_{h}}{\omega_{\alpha}} \right) \operatorname{Re}\left(\frac{\bar{h}_{1}}{\bar{\alpha}_{1} b} \right) V + \left(\frac{\omega_{h}}{\omega_{\alpha}} \right)^{2} \operatorname{Im}\left(\frac{\bar{h}_{1}}{\bar{\alpha}_{1} b} \right) \\ R_{5} &= - \left[2 \frac{\operatorname{Im}(\bar{c}_{m_{1}})}{\pi \bar{\alpha}_{1}} + \frac{1}{4} \mu \tilde{\omega}^{2} x_{\alpha} \operatorname{Im}\left(\frac{\bar{h}_{1}}{\bar{\alpha}_{1} b} \right) \right] V^{2} \\ &+ \sqrt{\mu} \bar{\omega} V \zeta_{\alpha} r_{\alpha}^{2} \end{split}$$

NASA BSCW Aeroelastic Configuration Transonic RANS CFD Model

Structural Parameters: $x_{\alpha} = 0.0, r_{\alpha}^{2} = 1.024, (\omega_{h}/\omega_{\alpha}) = 0.646,$ $\zeta_{h} = 0.002, \zeta_{\alpha} = 0.002,$ $a = 0.0, \text{ and } \alpha_{e_{0}} = 5.0^{\circ}.$

Computational Grid - 193 \times 49 "O-Mesh":

Figure: Computational Grid.

NASA BSCW Aeroelastic Configuration Transonic RANS CFD Model Continued

Flow Near the Flutter-Onset Condition: $M_{\infty} = 0.80, Re_{\infty} \approx 4,000,000, \bar{\alpha}_0 \approx 6.15^{\circ}$, and $\mu \approx 1100$.

Figure: Mean Flow Mach Number Contours.

Airfoil Geometric Shape Definition / Might "Better" Tabulated Data Be Available? Tabulated data is only given to at most three significant figures.

Table XIX. Coordinates of 14-Percent-Thick Supercritical Airfoil SC(2)-0414 Designed for 0.4 Lift Coefficient

			-			
x/c	(y/c)	(y/c).		x/c	(y/c)	(v/o).
	00	a1			11	131-11
0.000	0.0000	0.0000		.500	.0684	0642
.002	.0108	0108		.510	.0680	0633
.010	0225	= 0225		530	0672	- 0612
.020	.0299	-,0299		.540	.0667	0600
.030	.0350	0350		.550	.0662	0587
.040	.0389	0389		.560	.0656	0573
.050	.0421	0421		.570	.0650	0558
.060	.0448	0448		.580	.0643	0543
.070	0491	- 0493		.590	0636	=.0527
.090	.0510	0512		-610	.0620	0492
.100	.0527	0529		.620	.0611	0474
.110	.0542	0545		.630	.0602	-,0455
.120	.0556	0560		.640	.0593	0435
.130	,0569	0573		.650	.0583	0415
.140	.0581	0585		.660	.0573	0394
-150	.0592	0597		.670	.0562	0373
170	0612	= 0618		690	0540	- 0332
.180	.0621	0627		.700	.0528	0308
.190	.0629	0636		.710	.0516	0286
.200	.0637	0644		.720	.0503	0264
.210	.0644	0651		.730	.0490	0242
.220	.0651	0658		.740	.0477	0220
.230	.0657	0664		.750	0464	0198
.250	0668	0675		.770	.0436	0156
.260	.0673	0680		.780	.0422	0136
.270	.0677	0684		.790	.0407	0116
.280	0681	0688		.800	.0392	0097
.290	.0685	0691		.810	.0377	0078
.300	.0688	0694		.820	.0362	0060
.320	.0693	0698			.0346	0043
.330	.0695	0699		.850	.0314	0012
.340	.0697	0700		.860	.0298	.0001
.350	.0699	0700		.870	.0281	.0013
.360	.0700	0700		.880	.0264	.0023
.370	.0701	0699	- 1	.890	.0247	.0032
.190	.0702	0698		.910	.0211	.0044
.400	.0702	0695		.920	.0193	.0046
.410	.0702	0693	1	.930	.0175	.0046
.420	.0701	0690	1	.940	.0156	.0043
.430	.0700	0686	- 1	.950	.0137	.0038
.440	.0699	0682		.960	.0117	.0031
.450	.0697	0677		.970	.0097	.0021
470	.0693	0672		. 780	.0076	- 0008
.480	.0690	0659	-1	1.000	.0033	0027
.490	.0687	0651				
			- 6			

Figure: Airfoil Definition from Harris¹

¹Charles D. Harris. NASA Supercritical Airfoils - A Matrix of Family Related Airfoils. NASA Technical Paper 2969. Mar. 1990.

NASA BSCW Aeroelastic Configuration Improved Airfoil Definition

Figure: Airfoil Surface Pressure.

Figure: Airfoil Surface Pressure - Close-up.

NASA BSCW Aeroelastic Configuration Computed LCO Unsteady Pitch Response Trend

NASA BSCW Aeroelastic Configuration Computed LCO Frequency Response Trend

NASA BSCW Configuration Computed LCO Aeroelastic Mode Shape Response Trend

