

Fluid-Structure-Interactions of Flexible Panels in

Hypersonic Flows

Himakar Ganti, Luis Bravo, Anindya Ghosal, Prashant Khare AIAA SCITECH 2025 Jan 6th, 2025

Introduction

Introduction

Introduction

- Fluid-Structure-Interactions (FSI) are ubiquitous in nature wind turbines, biological flows in blood vessels, airflow over race-car tail wings providing downforce, etc.
- FSI in supersonic and hypersonic flows in aerospace engineering gas turbine engines, ramjet and scramjet engines, solid and liquid-rockets motors, external surfaces of air vehicles.
- Very critical for power-generating equipment- poor design can lead to premature metal fatigue and catastrophic failure.
- FSI simulations capturing transient behavior for hypervelocity flows are very rare and the literature is practically non-existent.
- This provides us with an opportunity to build, develop and use simulations to model and predict transient behavior.
- FSI has two different aspects physical exchange of pressure forces between fluid and solid and thermal exchange including both aspects simultaneously is a big challenge.
- Due to inherent challenge of coupling solvers design and modeling of hypersonic vehicles has been achieved with experiments and static simulations.
- Model simulations are not significantly influential on the design process as static simulations and experimental measurements are time-averaged.

Supersonic Flow, Ma 2.11, over Thin Plate

Department of Aerospace Engineering & Engineering Mechanics

• Unpublished work^[1] – FSI conducted for capturing initial-transient and fully-started conditions for supersonic flows over a thin compliant aluminum plate.

Governing Equations

Governing Equation – Fluid Domain

Department of Aerospace Engineering & Engineering Mechanics

mass, momentum and energy conservation

$$\mathcal{R}(U) = \frac{\partial U}{\partial t} + \nabla . \overline{F}^{c}(U) - \nabla . \overline{F}^{v}(U, \nabla U) - S = 0$$

species reaction rates

$$\dot{w}_s = M_s \sum_r (\beta_{s,r} - \alpha_{s,r}) (R_r^f - R_r^b)$$

molecular viscosity $\mu = \mu_0 \left(\frac{T}{T}\right)^{3/2} \left(\frac{T_0 + S_{\mu}}{T + S_{\mu}}\right)$

Governing Equation – Hypersonic Flow Modeling

Department of Aerospace Engineering & Engineering Mechanics

for monatomic and polyatomic species, for electrons

$$e_s^{rot} = \begin{cases} \frac{\xi}{2} \frac{R}{M_s} T, \\ 0, \end{cases}$$

for polyatomic species,

for monatomic species and electrons

for polyatomic species,

Landau-Teller relaxation, with Park limit

 $\dot{\theta}_{tr:ve} = \sum_{s} \rho_{s} \frac{dE_{ve,s}}{dt} = \sum_{s} \rho_{s} \frac{E_{ve^{*},s} - E_{ve,s}}{\tau}$

for monatomic species and electrons

 $e_s^{el} = \begin{cases} \frac{R}{M_s} \frac{\sum_{i=1}^{\infty} g_{i,s} \theta_{i,s}^{el} \exp\left(-\theta_{i,s}^{el}/T_{ve}\right)}{\sum_{i=1}^{\infty} g_{i,s} \exp\left(-\theta_{i,s}^{el}/T_{ve}\right)}, & \text{for monatomic and polyatomic species,} \\ \frac{3}{2} \frac{R}{M_s} T^{ve}, & \text{for electrope} \end{cases}$

Millikan and White relaxation, with high temperature limit correction

$$\tau_{sr} = \frac{1}{p} \exp \left[A_{s} r \left(T^{-1/3} - 0.015 \mu_{sr}^{1/4} \right) - 18.42 \right]$$
$$\tau_{ps} = \frac{1}{\sigma_{s} c_{s} n}$$

Governing Equations - Solid Domain

Elasticity Equation with
Geometric Non-Linearities
$$\rho_s \frac{\partial^2 \mathbf{u}}{\partial t^2} = \nabla (\mathbf{F} \cdot \mathbf{S}) + \rho_s f \qquad \begin{cases} \mathbf{u}_s = \mathbf{u}_{s,e} & \text{on } \Gamma_{s,e} \\ \sigma_s \mathbf{n}_s = \lambda_{s,n} & \text{on } \Gamma_{s,n} \end{cases}$$

Second Piola-Kirchoff Stress
$$S^{PK}_{ij} = \lambda_s E_{kk} \delta_{ij} + 2\mu_s E_{ij}$$
 Lagrangian Stress Tensor $E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j}$

Young's Modulus in terms
of Lame's Constant
$$E = \frac{\mu_s (3\lambda_s + 2\mu_s)}{\lambda_s + \mu_s}$$
 Poisson's Ratio in terms of Lame's Constant $v = \frac{\lambda_s}{2(\lambda_s + \mu_s)}$

Governing Equations – Interface Coupling

Department of Aerospace Engineering & Engineering Mechanics

Boundary velocity is same as velocity of solid or fluid at the boundary $u_f = u_s = u_{\Gamma}$

Equilibrium at the interface gives $\lambda_f + \lambda_s = 0$

The Dirichlet-Neumann non-linear condition for the fluid

 $\lambda_f = \mathbf{F}_f \left(u_{\Gamma_f} \right)$ on $\Gamma_{\mathrm{f,i}}$

The Dirichlet-Neumann non-linear condition for the solid

$$\lambda_s = \mathbf{F}_s(u_{\Gamma_s}) \text{ on } \Gamma_{s,n}$$

$$F_{f}(u_{\Gamma}) + F_{s}(u_{\Gamma}) = 0$$
$$F_{s}^{-1}(-F_{f}(u_{\Gamma})) = u_{\Gamma}$$

Model Validation

- The 25° -55° double cone configuration of CUBRC^[1] Run 80 is selected for hypersonic flow validation.
- Double-cone geometry with freestream conditions is shown below.
- A mesh with a uniform grid size of 200 μm was generated for simulating the hypersonic flow.
- ROE scheme for spatial, with 4th order Runge-Kutta time marching scheme were selected for the simulation with a timestep of 1.0E-8 s.
- The double cone surface is considered isothermal at 300 K.
- Vibrational temperature was set at 2711 for the two-temperature model used for hypersonic flows.
- Chemical reactions were not modeled for the 2-species (N₂, N) working fluid.

CUBRC Run 80	Flow Condi	tions
2-species	Nitrogen	
Mach #		11.850
Gamma		1.4
R	J/kg-K	288.68
Vibration Temperature	K	2711.00
Total Pressure	Pa	8438645
Total Temperature	K	4828.0
Temperature	K	166.00
Pressure	Pa	63.60
Density	kg/m3	1.3272E-03
Velocity	m/s	3069.34
Viscosity @ 273 K	Pa-s	1.173E-05
Length	m	1.000
Reynolds # (Integral)		347279
Kolmogorov Scale	μm	70.0
Taylor Scale Reynolds		1522
Taylor Scale	m	5.366E-03
Sutherland Temperature	K	110.4
Actual Viscosity	Pa-s	7.710E-06

^[1]Holden. M, "The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes" Report, 2010. URL https://apps.dtic.mil/sti/citations/ADA581907.

Experimental Validation - Pressure

Department of Aerospace Engineering & Engineering Mechanics

• SU2 validation results with the experiment CUBRC^[1] Run 80.

^[1] Holden. M, "The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes" Report, 2010. URL https://apps.dtic.mil/sti/citations/ADA581907.

Initial Transients – Flow Behavior

Thin Panel – Configuration & Conditions

Department of Aerospace Engineering & Engineering Mechanics

- The HyMAX^[1] configuration of UNSW was selected for operating conditions.
- Simulations are run for an initial transient time of 20 ms.
- Flow domain has a uniform mesh size of $200 \,\mu m$.
- Solid domain has a uniform mesh size of 200 μ m.
- Plate thickness is 2.0 mm
- 5-species air with the following N₂, O₂, N, O, NO; is the working fluid.
- Turbulence is not modeled as the grid size is 200 μ m, which is a coarse DNS resolution with the

Kolmogorov scale estimated for the high-speed flow at 80 µm.

Flow Co	nditions				
5-species Air					
Mach #		5.86			
Gamma		1.4			
R	J/kg-K	288.68			
Total Pressure	Pa	1.008E+06			
Total Temperature	K	600			
Vibration Temperature	K	2711			
Temperature	K	76.26			
Pressure	Pa	737.8			
Density	kg/m3	0.03352			
Velocity	m/s	1028.765			
Viscosity @ 273 K	Pa-s	1.173E-05			
Length	m	0.13			
Reynolds # (Integral)		382123			
Kolmogorov Scale	μm	80.0			
Taylor Scale Reynolds		1596			
Taylor Scale	m	6.650E-04			
Sutherland Temperature	K	110.4			
Actual Viscosity	Pa-s	3.551E-06			

^[1] Poudel, N., Sahani, S., Pudasaini, S., Bhattrai, S., Darlami, K., and Talluru, M. K., "Numerical Study of Hypersonic Fluid-Structure Interaction on a Cantilevered PlateWith Shock Impingement Using Low and High-Fidelity Numerical Methods," AIAA AVIATION FORUM AND ASCEND 2024, American Institute of Aeronautics and Astronautics, 2024. doi:10.2514/6.2024-4053,

Initial Transient Flow – Pressure

Department of Aerospace Engineering & Engineering Mechanics

- Pressure evolution for a rigid, steel and aluminum plates for initial 20 ms.
- Rigid plate does not have a stagnation region, while the steel and aluminum plate show stagnation regions at the free end of the thin plate.
- A vortex street originates at the tip of the rigid plate but is eventually dissipated.
- Standing shock waves originating from the stagnation region at the plate tip are more significant for the flexible steel and aluminum plates when compared to the rigid plate.
- Aluminum plate has larger tip displacements, at 3.0 mm; Steel has lower tip displacements at 1.0 mm.

aluminum plate

rigid plate

Time Averaged Flow - Pressure

Department of Aerospace Engineering & Engineering Mechanics

- The standing shock waves originating at the tip of the steel and aluminum plates have larger pressure gradients.
- The rigid plate has no stagnation region, while the steel and aluminum plates have stagnation regions attached to the thin plate tip.
- Vortex shedding phenomenon is not observed for time-averaged pressure.

steel plate

rigid plate

aluminum plate

	time averaged velocity, m/s							
0	200	400	600	800	1000			

Initial Transient Flow – Temperature

Department of Aerospace Engineering & Engineering Mechanics

- Temperature evolution for a rigid, steel and aluminum plates for initial 20 ms.
- For the rigid plate, a vortex street type formation is observed, which is not present with the other plates.
- A thermal boundary layer is formed around the rigid plate, while a thermal boundary layer is not visible for the steel or aluminum plates.
- The presence of a vortex street structure suggests the possibility of transitioning to higher vorticity with sustained flow.

thin plate displacement, mm							
	0	0.2	0.4	0.6	0.8	1	
steel plate							

rigid plate

translational temperature, K							
70	150	300)	450	570		
velocity, m/s							
0	200	400	600	800	1000		
				I			

aluminum plate

Time Averaged Flow - Temperature

- The standing shock waves originating at the tip of the steel and aluminum plates have larger pressure gradients.
- The rigid plate has no stagnation region, while the steel and aluminum plates have stagnation regions attached to the thin plate tip.
- Vortex shedding phenomenon is not observed for time-averaged pressure.

Initial Transient Flow – Vorticity

Department of Aerospace Engineering & Engineering Mechanics

- Vorticity evolution for a rigid, steel and aluminum plates for initial 20 ms.
- Vorticity extends along the edges of the rigid plate but gets dissipated due to steel and aluminum plate oscillations.
- Vorticity is the highest along the wall edges before it interacts with steel and aluminum plates.
- Rigid plate configuration has a boundary layer with high vorticity.

thin plate displacement, mm							
	0	0.2	0.4	0.6	0.8	1	
steel plate							

rigid plate vorticity, rad/s 40000 60000 80000 100000 0 20000 velocity, m/s 600 200 400

aluminum plate

1000

800

Time Averaged Flow - Vorticity

- The rigid plate has the highest vorticity around the plate edges, and this is extended downstream of the rigid plate tip.
- Steel and aluminum plate do not see an accumulation of vorticity as their oscillations tends to dissipate the vorticity which is confined to the walls connected before the plates.
- Transition of flow to turbulence is not complete and longer simulation times can reveal the changes to vorticity.

Initial Transient Flow – Q-criterion

Department of Aerospace Engineering & Engineering Mechanics

- Q-criterion evolution for a rigid, steel and aluminum plates for initial 20 ms.
- Shear dominates in the wake region between the standing shock waves for steel and aluminum plates.
- For the rigid plate configuration, vorticity is dominant close to the plate edges and showing up as a thick boundary layer. This implies that the flow in the boundary layer has very high vorticity.
- Vortex shedding and the vortex street is visible for the rigid plate.

aluminum plate tnin plate displacement, mm

Time Averaged Flow – Q-Criterion

- The rigid plate has the highest vorticity around the plate edges, and this is extended downstream of the rigid plate tip.
- Steel and aluminum plate do not see an accumulation of vorticity as their oscillations tends to dissipate the vorticity which is confined to the walls connected before the plates.
- Transition of flow to turbulence is not complete and longer simulation times can reveal the changes to vorticity.

Initial Transients – Solid Behavior

Time Averaged Displacement and Stress

- Steel and aluminum plates both show the same time-averaged displacement at ~ 0.2 mm.
- The thin plates experience maximum stress at the clamped end.
- Von Mises stress for steel plate ~ 16 Mpa; aluminum plate ~ 17 MPa.
- Maximum tip displacement amplitude for steel plate ~ 1 mm; aluminum plate ~ 3mm.
- The steel plate has a smaller tip displacement amplitude when compared to the tip displacement amplitude of the aluminum plate.
- The frequency of oscillation for the tip of the steel plate is 137 Hz; aluminum plate is 183 Hz.

Conclusions & Future Work

Conclusions:

- Rigid, steel and aluminum plates were simulated for interactions with hypersonic flows, for initial transient behavior of 20 ms.
- Transient and time-averaged fluid and solid quantities were both reported to provide more information for design decisions.
- Shock waves at the plate tip for steel and aluminum plates have larger pressure gradients.
- The flow behavior for the rigid plate configuration is different than the flow behavior for steel and aluminum plate behavior.
- The aluminum plate has higher displacement amplitudes and oscillation frequency when compared to the steel plate due to the lower elasticity.

Future Work:

- Simulations will be run for longer times to investigate change is flow and solid behavior and fluid-structure interactions.
- Different flow conditions and solid plate materials can be examined for fluid-structure-interactions under hypersonic flow conditions.

Questions