Hypersonic Multibody Aeroelastic eXperiment:

HyMAX update + UNSW

- Export permits
- Simulation updates
- Experimental work
- Future plans

Outline

Export permits

- Krishna has been working on export permits to distribute data timeseries
- Contact <u>k.talluru@unsw.edu.au</u> for more details
- Process will likely change come September as AUS export control is changing under AUKUS Pillar 2. Should be easier exchange to:
 - AUKUS partners;
 - Five Eyes partners;
 - Those on an approved Foreign Country List (FCL); or
 - Is clearly free exchange of clearly fundamental research.

Simulation updates

- Started preliminary, heated, coupled simulations of HyMAX to explore experimental value – IFASD2024
- Immediate takeaways:
 - Detailed cold simulation needed, comparing apples to giraffes at this point
 - Deeper causal analysis
 - Identified inlet boundary condition of primary importance
 - TUSQ impulse dominated
 - Time-varying inlet flow structures including initial impulse necessary

Simulation updates

- Current plan for inlet structures:
 - 1. 2D unsteady simulation of tunnel. Gather field quantities at nozzle.
 - 2. '3D' axisymmetric wedge, unsteady scale-resolved of tunnel. Gather field quantities at nozzle.
- Have barrel pressure trace to compare against.
- Likely only after diaphragm rupture
 - Piston traversal does impact pressure trace so dynamic wall needed
- Need to discus with UniSQ

Tuten, Z. (2024), 'Design and Implementation of a Radiatively Pre-heated Fluid Thermal Structural Interaction Experiment,' PhD Thesis (pre-print)

- ANSYS Fluent Intrinsic two-way FSI
 - 2D laminar fluid model
 - 2.5D projection for FEM-based structural
- Initial steady, rigid fluid solution before unsteady, compliant FSI solution
- Hot structure defined both isothermal walltemp (fluid side), and material property (structural side)
 - RT and 350°C

- Mesh details:
 - Structured grid, no radii, freestream aligned
 - Conformal meshes
 - 15,750 solid cells*, 431,275 fluid cells
 - Total cells: 447,025
 - Orthogonality: 0.995 ± 0.011 (1σ)
 - Skewness: 0.035 ± 0.054 (1σ)
 - AR: 23.55 ± 94.11 (1σ)
 - 1st cell height: 10 µm

- Fluid details:
 - Pressure farfield (inlet), pressure outlets (outlets), no-slip walls (all walls)
 - Density-based (ideal gas, kinetic theory viscosity)
 - Laminar model
 - Isothermal walls
 - Implicit formulation, AUSM flux-type
 - GGNB spatial gradient
 - 2nd order upwind flow
 - High speed numerics (additional relaxations and looser tolerances and limits)
 - 1st order implicit transient formulation

Reference Values

Area [m ²]	0.0104	
Density [kg/m³]	0.0350703	
Depth [m]	0.08	
Enthalpy [J/kg]	582069.3	
Length [m]	0.13	
Pressure [Pa]	755	
Temperature [K]	75	
Velocity [m/s]	1006.566	
Viscosity [kg/(m s)]	5.557898e-06	
Ratio of Specific Heats	1.4	
Yplus for Heat Tran. Coef.	300	

• Structure details:

- Nonlinear elasticity (elastic updating large deflection model)
- Thermal effects enabled
- $\Delta T = 0$ (i.e., no thermal expansion)
- Newmark transient formulation

• Coupling details:

- Started from steady-state fluid solution
- Diffusion-based smoothing (hot)*, RBF-based (cold)* for mesh motion
- Pressure loads mapped (found out after sims viscous mapping is TUI-only additional option)

Mach contour animation, cold panel (looped, cropped)

Mach contour animation, hot panel (looped, cropped)

- 130 ms simulated
 - Similar to usable TUSQ flow time
 - Original simulation attempts inefficient and slow
- Both hot and cold structures show successive amplitude growth
 - Timeframe too short to determine stability
- Hot structure has greater DC bias, larger amplitudes, and is lower frequency
 - Higher loads also present
- Both hot and cold deflection generally seem quite sinusoidal (single-mode)
 - Force something starting to go on

- Spectral content considered from AR-PSD
- Response strongly dominated by first-bending
 - Hot has slightly reduced higher mode participation
- Fluid loads reflect structural response
- Deeper relationship and causal study needed then just this

- Pressure coefficient distributions considered
- Initial (from steady fluid), along with cold extrema and similar amplitude hot peak and trough assessed
- Hot wall moves pressure centre downstream (towards panel trailing)
 - Explains increase of first-mode dominance

Experimental work

- No new experimental work on HyMAX case, but...
- Growing library of heated work:
 - Free-expansion heated CFCF
 - Radiative heating in TUSQ (Zach Tuten, PhD coming very soon!) completed
 - Conformal heating in TUSQ (Capt. Damon Kirkpatrick (USAF)) underway
 - Convective heating in M6-HRF (in planning for HyMAX and CFCF)
- What would make HyMAX more enticing if it were to be re-run?
 - What quantities would people like to see?
 - Onboard: Hard to change
 - Offboard: PSP, DIC, laser line-scanner, high-speed thermography, laser pointdisplacements
 - Any changes to explored physics, barring heat?
 - Softer material to drive large deflections

Future work

- Heated HyMAX a possibility:
 - Additively heated by radiative/conformal heater
 - Aerothermal heating
 - Challenges: limited time, manpower and funding

Heated CFCF with SBLI

- Run by Capt. Damon Kirkpatrick (USAF), contributing to PhD
- Free-expansion avoiding pre-stress
- Restricted-expansion to explore thermal buckling
- Mechanical buckling without heat
- Non-buckled, deformed profiles

Kirkpatrick, D. (2024)

Future work

- Simulations planned:
 - Hot HyMAX 10° (SciTech) and dynamic generator
 - Hot CFCF at 5° (AFMC) short page limit problematic, but decoupled physics looked at
 - Cold comparisons needed
 - TUSQ facility simulation for inlet flow structures
 - Reassessment of HyMAX with these inlet flow structures

Future work – CCCC, variable boundary (AFOSR)

Future work – CCCC, variable boundary (AFOSR)

Neely, Hoke, Dooner, Talluru, Kleine, Wild, McQuellin, Buttsworth / Hypersonic FTSI Unit Case for a Thermally-Buckled Structural Panel / AFOSR FA2386-23-1-4083 PM: (Garrison Lindholm AOARD)

Pseudo-heated: Usage of softer material to emulate stiffness turn-down

