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Background

• One of two test cases for the High-Speed Working Group

• A hypersonic cantilevered plate experiment performed by University of New 
South Wales (UNSW) Canberra at The University of Southern Queensland (TUSQ) 
Ludwieg tube
• A flexible cantilevered plate attached to a stand

• L = 130 mm, h = 2mm, b = 80 mm

• Optional shock generator above the setup
• 2 primary cases – 2 degrees and 10 degrees

• Optional – Oscillating wedge (5 degrees ± 3 degrees)

• Test Conditions (freestream values)
• M = 5.8

• T = 75 K

• P = 755 Pa

• Re = 7.1e6 /m
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• Solver used was FUN3D v14.2
• 2D Mode, Riemann (farfield) BC on the edges of the domain, symmetry BC on the 

spanwise boundaries, no-slip walls
• Turbulence Model: SA-neg with Reynolds Stress Model (QCR2000) and Rotation and 

Compressibility corrections
• ALDFSS flux construction, Venkatakrishnan limiter
• Optimized second-order backward differencing in time
• Δt = 1e-3 (5.76e-6 s)
• Referenced off prior study by Bartels1

• Utilized built-in aeroelastic modal solver
• Two step process

• Obtain a steady state solution with no motion
• Restart from steady flow field with motion enabled and zero applied structural damping

31Bartels, R., “NASA Langley Research Center Contributions to the 3rd AePW High-Speed Working Group – HyMAX Computational 
Aeroelastic Predictions,” AIAA SciTech, 2023, 
https://ntrs.nasa.gov/api/citations/20230000286/downloads/LaRC_HyMAX_presentation_1-21-2023.2.pdf



• Unstructured mesh with inflation layer
• Coarse mesh in the farfield

• Two areas of refinement – around the shock generator and test section

• Inflation layer with Δz = 3e-6 m the on the shock generator and test section
• y+ < 1 along the plate
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• Only two structural modes used in the simulations

• Fixture and plate included, with fixed boundaries conditions applied to the 
fixture

• Material properties from the 2019 paper2

• E = 52.7 GPa, r = 2670 kg/m^3, η = 0.33

• Ansys Mechanical used to obtain mode shapes and frequencies
• 1st mode - 84.723 Hz, 2nd mode - 530.41 Hz

• From the paper, 1st mode – 83 Hz

5
2Currao, G., Neely, A., Kennell, C., Gai, S., and Buttsworth, D., “Hypersonic Fluid–Structure Interaction on a Cantilevered Plate with 
Shock Impingement,” AIAA Journal, Vol. 57, No. 11, 2019, pp. 4819-4834. https://doi.org/10.2514/1.J058375



Mach Contours
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• Predicting flutter boundary through an analytical parameter
• Strong sensitivity to aerodynamic to structural compliance ratio, shown by 

McHugh et al.3

Λ =
𝜌𝑈2𝐿3

𝑀𝐷
 

𝐷 =
𝐸ℎ3

12(1 − 𝜈2)

• Depends on flow parameters
• Free-stream vs. local parameters (post-shock impingement)
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3McHugh, K.A., Fredin, M., Kruger Bastos, K., Beran, P., and Dowell, E.H., “Flutter and Limit Cycle Oscillations of Cantilevered Plate in 
Supersonic Flow,” Journal of Aircraft, Vol. 58, No. 2, 2021, pp. 266-278. https://doi.org/10.2514/1.C035992



Density Contours
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Oscillating Wedge Case

• An optional test case from AePW3
• Wedge geometry was the same as in the data package

• The wedge pitches at a frequency of 42 Hz4

• Starts at 5° and oscillates ± 3°

174Currao, G.M.D., McQuellin, L.P., Neely, A.J., Gai, S.L., O’Byrne, S., Zander, F., Buttsworth, D.R., McNamara, J.J., and Jahn, I., 
“Hypersonic Oscillating Shock-Wave/Boundary-Layer Interaction on a Flat Plate,” AIAA Journal, Vol. 59, No. 3, 2021, pp. 940-959. 
https://doi.org/10.2514/1.J059590
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Conclusions

• FUN3D Simulations of the HyMAX experiment have been performed
• For the experimental plate of a certain thickness studied by Currao et al., our 

results are consistent with that of others, i.e. a stable decaying oscillation of 
the plate with a frequency near the first natural frequency.

• Simulations for thinner plates show flutter and limit cycle oscillations (LCO) 
with and without a shock generator.

• Without a shock generator, the flutter and LCO results are similar to those 
found by Kevin McHugh using piston theory aerodynamics.

• With a shock generator, thicker plates are needed to suppress flutter and LCO. 
The thickness needed to suppress flutter/LCO increases with increases in 
shock generator wedge angle.
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Future work

• Utilize the FUNtoFEM framework to couple with a FEM solver and 
compare with current internal modal solver results
• Use additional modes with modal solver

• Replicate the tunnel start-up through different imposed initial 
conditions

• Introduce thermal effects to the panel

• Extrude the domain in the spanwise direction and run the simulation 
as 3D
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