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Goals / Methods

* High-fidelity computational modeling of the unswept Pazy wing
* Focus on limit cycle oscillations (LCO)

* Time-domain coupling of FUN3D and Nastran (sol-400)

* Python-based interfacing with FUNtoFEM; load-displacement transfer
with MELD

* https://github.com/smdogroup/funtofem
e FUN3D: unsteady finite-volume RANS solver with SA
* Python-wrapper of sol-400 written with pyNastran
* https://github.com/SteveDoyle2/pyNastran
* Beam model of Pazy wing used in Nastran
* Loose coupling: one fluid-structure pass per time step
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Motivation

* Why use CFD for this work?

* All of the static and dynamic aeroelastic predictions from AePW-3
showed good agreement with experiment, when using linear panel
aerodynamics

* Relatively few have looked at computational LCO modeling, but there also
the computed LCOs appear to be mostly driven by structural
nonlinearities

* But, perhaps at higher AoA’s, dynamic stall could play a role

* The URANS solvers used here can accurately predict some, but
not too much, separated flow behavior



Computed Pazy LCO at 1 deg. AoA, 70 m/s
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Computed Pazy LCQO’s at 1 deg. AOA
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* Subcritical LCO: high-amplitude
dynamics exist at velocities
below the flutter onset point

* LCO dynamics monotonically
decrease from the LCO-fold point
up to the flutter offset

* We don’t see LCO’s beyond the
flutter offset

* LCO dynamics are not centered
about the static-aeroelastic
result, particularly near the fold



Technion Experimental Data
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Experimental data does show LCO near
the higher-speed flutter offset points,
but that’s at 3and 5 deg.

Our preliminary simulations are only at
1 deg.
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* Experimental data does show LCO’s that are not
symmetric about the static aeroelastic result
* Particularly true at the lower-speed flutter onset

 Butthis dataisat5deg., and our preliminary
simulations are onlyat 1 deg



Next Steps

* Repeat this exercise at higher AoA’s: 3, 5, and 7 deg.

* Try to quantify the role of intermittent flow separation at the higher AocA
LCOs, if any

* Particularly at these higher AoA, need to demonstrate some level of mesh
convergence

* The complete mapping of LCO’s at 1 deg. AoA took several
months to complete

* Nastran license restrictions were a big part in that slowness
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