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Topology Optimization

3Sigmund (2001) “A 99 line topology optimization code written in Matlab,” SMO 21.
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Topology Optimization
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State equation (x) solve

Design (y) update

Design representation 
mapping
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• Any PDE solver with 
adjoint sensitivity can be 
used.

• Any design 
parameterization can be 
used.



Generalized Architecture
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Optimization Sensitivity wrt
design variable

Sensitivity 
analysis

Parameterization PDE solveModify design

State equation solveDesign update Mapping



Large-Scale Level Set Topology 
Optimization

Modeled only a half (symmetry)
8 million elements
160 processors (64 GB RAM/node)
Converges in 250 iterations, 6 hours



Flat Lens via Multiple Material

Acoustic lens design with varying focal depths

Hyun & Kim (2021) Transient level-set topology optimization of a planar acoustic lens working with short-duration pulse, JASA.



Level Set Topology Optimization
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Optimization
Sensitivity wrt
design variable
Discrete Adjoint

Sensitivity 
analysis
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Design 
parameterization

PDE solve

Level set method

𝐹𝐹 = � 𝑓𝑓𝑜𝑜𝑑𝑑Ω

𝐺𝐺 = � 𝑔𝑔𝑑𝑑Ω



Large-Scale Topology Optimization
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Optimization
Sensitivity wrt
design variable
Discrete Adjoint

DTU Sensitivity 
analysis

𝑑𝑑𝐹𝐹
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𝜕𝜕𝐹𝐹
𝜕𝜕𝜌𝜌𝑒𝑒

Design 
parameterization DTU FE solver

Level set method

𝐹𝐹 = � 𝑓𝑓𝑜𝑜𝑑𝑑Ω

𝐺𝐺 = � 𝑔𝑔𝑑𝑑Ω



VDB-LSTO Method
[3.2 billion elements, 56 cores, 128GB]

Kambampati, Jauregui, Museth, Kim (2021) “Geometry Design Using Function Representation on a Sparse 
Hierarchical Data Structure,” CAD 133.






Heat conduction

• Min average temperature, st vol < 30% 
• 8 million elements
• Desktop workstation, 56 cores ,128 GB RAM
• Converges in 200 iterations
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40%

4%



Why use Level Set Topology Optimization? 

Level set

SIMP

Δ𝑇𝑇 = 0 Δ𝑇𝑇 = 0.001 Δ𝑇𝑇 = 0.01 Δ𝑇𝑇 = 0.05



Generalized TO: 
Interoperable Reusable Software Architecture
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Optimization
Sensitivity wrt
design variable Sensitivity coupling

Design 
parameterization

Multiphysics 
solversLevel set method

𝐹𝐹 = � 𝑓𝑓𝑜𝑜𝑑𝑑Ω

𝐺𝐺 = � 𝑔𝑔𝑑𝑑Ω

Adjoint sensitivity

Hyun, Kim (2022) “On the development of an easy-accessible and non-intrusive level-set topology optimization 
framework via the discrete adjoint method,” AIAA SciTech.



ParaLeSTO: 
FAIR Principles for Opensource Software

• Findability
• Accessibility
• Interoperability
• Reusability

More information at http://m2do.ucsd.edu/software/

15Jauregui, Hyun, Neofytou, Kim (2022) “Avoiding reinventing the wheel: developing reproducible opensource 
topology optimization software”, SMO, submitted 

http://m2do.ucsd.edu/software/


Numerical examples

• COMSOL (Physics solver) & Symbolic AD
• Max. 1st thermal eigenvalue s.t. Locally-averaged 

volume

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙 = 8 𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙 = 14

<
Manufacturable

Maximizing Heat Conduction 
via Eigenvalue



Conformal cooling channel on a sphere

Vin

Vin

Vout

Vout

Vout

Vout

Optimize topology of channel flow
Min k average temperature + (1-k)
pressure drop 
volume constraint 15%



Two-Phase Heat Exchanger
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Electrical Aircraft – X57 Maxwell 
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https://sacd.larc.nasa.gov/x57maxwell/

https://www.anttilehikoinen.fi/technology/electric-aircraft/



Load-carrying + Heat Exchanger + 
Battery Pack

20Kambampati, Gray, & Kim (2021) “Level Set Topology Optimization of Load Carrying Battery Pack”, IJHMT



Load-carrying + Heat Exchanger + 
Battery Pack
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Heat Conduction + Stress

2222
Kambampati, Kim (2020) Computers and Structures 235: 106265



• Steady-state flow
• Linear elastic solid

• Optimization:
Min. Compliance
s.t. Volume constraint 40% 
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Leaflet in a Channel - FSI

Kambampati, Kim, et al. (2021) “A discrete adjoint based level set topology 
optimization method for stress constraints”. CMAME 377.



Solutions for Different Re 

24

Re = 0.01

Re = 1000



Pressure Profiles
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Re = 0.01

Re = 1000



Multiscale Topology Optimization

26

𝛥𝛥𝛥𝛥 (°C)

0

75

225

300

Macroscopic
design

Microscopic design
Unit cell 3x3 arrays

Effective elasticity matrix 
(GPa)

219.23 65.77 0
65.77 219.23 0

0 0 76.73

97.32 −0.17 22.38
−0.17 27.11 1.63
22.38 1.63 17.02

56.75 −7.32 6.85
−7.32 9.73 −0.79
6.85 −0.79 6.15

26.17 −3.96 2.74
−3.96 4.66 −0.37
2.74 −0.37 2.83



Multiscale Topology Optimization with 
Multiple materials

• 4 subdomains

𝐹𝐹

D1 D2 D3 D4

D2D1

Macroscopic design
𝑓𝑓 = 8891.31, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 =

0.128

𝑉𝑉𝑚𝑚𝑖𝑖𝑐𝑐 = 0.391

𝐹𝐹

D1 D2 D3 D4 D5 D6 D7 D8

D1 D2

D3 D4

• 8 subdomains

Macroscopic design
𝑓𝑓 = 7959.96, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 =

0.103 𝑉𝑉𝑚𝑚𝑖𝑖𝑐𝑐 = 0.487



Pareto optima for multiscale solutions
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Li, Du & Kim (2020). Design of Architected Materials for Thermoelastic Macrostructures 
Using Level Set Method. JOM 72.



Current Research: 
TO for mixed heat transfer modes

29

Temperature control under Conduction + Convection + Radiation
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• R&TD Project

• Additively Manufactured Rover Chassis with 

Integrated Thermal Control for Extreme Cold 

Environments

• Thermo-mechanical topology optimization of 

the chassis

• Additively Manufactured heat switch

• Additively Manufactured structural insulation

Optimization of Rover Chassis : Alex Guibert 
Introduction

Perseverance – NASA
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• Develop a rover for extreme cold 
environment

• Cold Lunar regions / Lunar permanently 
shadowed regions (PSR) ~ -230 °C/50 K

• Martian high latitudes ~ -150 °C/120 K

 These environments are very challenging 
for the avionics: operational temperature 
~ -20 °C/250 K

 Active heating is needed to maintain the 
temperature

Objective: minimizing the amount of energy 
needed while satisfying the structural 
requirements 

Motivations

NASA/JPL/ASU

Lunar surface temperatures based on location, Heiken, 1991



Baseline
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• Intrepid planetary mission concept study 
from 2020

• Design domain and loading conditions
• Mass of the mast ~ 120 kg
• Mass of batteries + electronics ~ 230 kg

2.45 m

1.45 m

0.6 m

Intrepid Planetary Mission Concept Study Report, JPL/ASU, 2020



Approach
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• Coupling of the thermal and structural 

disciplines to maximize the overall 

performance

• Level-set topology optimization 

• Efficient implementation for large scale 

multiphysics optimization (parallel computing, 

low-level programming language for backend 

computation…)

• Experimental validation



Preliminary results
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Maximization of the stiffness
Subject to a volume requirement

Titanium
Mass ~ 300 kg



Next steps
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• Thermo-mechanical topology optimization of the rover chassis
• Validation through prototypes
• More complex loading conditions: launch, uneven surfaces…



Conclusions

3636

• Conflicting multiphysics environments can create 
unintuitive design space.

• Topology Optimization can consider coupled 
multiphysics effects, leading to the overall optimum 
design.
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Engineering mechanics

Computer 
sciences

Mathematical 
methods

http://m2do.ucsd.edu/software/

http://m2do.ucsd.edu/software/
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