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Sigmund (2001) “A 99 line topology optimization code written in Matlab,” SMO 21.3



Topology Optimization
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Topology Optimization
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Generalized Architecture
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Large-Scale Level Set Topology

Optimization

Modeled only a half (symmetry)

8 million elements

160 processors (64 GB RAM/node)
Converges in 250 iterations, 6 hours



Flat Lens via Multiple Material
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Acoustic lens design with varying focal depths

Hyun & Kim (2021) Transient level-set topology optimization of a planar acoustic lens working with short-duration pulse, JASA.



Level Set Topology Optimization
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Large-Scale Topology Optimization
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VDB-LSTO Method
[3.2 billion elements, 56 cores, 128GB]

Kambampati, Jauregui, Museth, Kim (2021) “Geometry Design Using Function Representation on a Sparse
Hierarchical Data Structure,” CAD 133.






Heat conduction
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8 million elements

Desktop workstation, 56 cores ,128 GB RAM

Converges in 200 iterations
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Why use Level Set Topology Optimization?

AT =0 AT = 0.001 AT = 0.01 AT = 0.05
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Generalized TO:

Interoperable Reusable Software Architecture

Design N Multiphysics
parameterization solvers
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Hyun, Kim (2022) “On the development of an easy-accessible and non-intrusive level-set topology optimization
framework via the discrete adjoint method,” AIAA SciTech.
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ParalLeSTO:
FAIR Principles for Opensource Software

Findability
Accessibility
Interoperability
Reusability

More information at http://m2do.ucsd.edu/software/

Jauregui, Hyun, Neofytou, Kim (2022) “Avoiding reinventing the wheel: developing reproducible opensource 15
topology optimization software”, SMO, submitted


http://m2do.ucsd.edu/software/

Maximizing Heat Conduction
via Eigenvalue

e COMSOL (Physics solver) & Symbolic AD
 Max. 1st thermal eigenvalue s.t. Locally-averaged

volume
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Conformal cooling channel on a sphere

Optimize topology of channel flow
Min k average temperature + (1-k)
pressure drop

volume constraint 15%




Two-Phase Heat Exchanger

Jet Propulsion Laboratory
California Institute of Technology




Electrical Aircraft — X57 Maxwell

https://sacd.larc.nasa.gov/x57maxwell/
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Load-carrying + Heat Exchanger +
Battery Pack

clamped at root

20

Kambampati, Gray, & Kim (2021) “Level Set Topology Optimization of Load Carrying Battery Pack”, IJHMT



Load-carrying + Heat Exchanger +
Battery Pack
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Heat Conduction + Stress
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Kambampati, Kim (2020) Computers and Structures 235: 106265



Leaflet in a Channel - FSI

e Steady-state flow | _

e Linear elastic solid ' —

ST
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* Optimization:

Min. Compliance
s.t. Volume constraint 40%

Kambampati, Kim, et al. (2021) “A discrete adjoint based level set topology
optimization method for stress constraints”. CMAME 377. 3



Solutions for Different Re

Re =0.01

Re = 1000

24



Pressure Profiles

Re =0.01

Re = 1000

25



Multiscale Topology Optimization

AT (°C) Macroscopic Microscopic design  Effective elasticity matrix
design Unitcell — 3x3arrays (GPa)
219.23 65.77 0
0 65.77 21923 0
0 0 76.73
97.32 -0.17 22.38
75 -0.17 27.11 1.63
22.38 163 17.02
56.75 -7.32 6.85
225 -7.32 9.73 -0.79
6.85 -0.79 6.15
26.17 -396 2.74
300 -3.96 4.66 -0.37
274 -037 2.8319g




Multiscale Topology Optimization with
Multiple materials

* 4 subdomains
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Pareto optima for multiscale solutions
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Li, Du & Kim (2020). Design of Architected Materials for Thermoelastic Macrostructures 28
Using Level Set Method. JOM 72.



Current Research:
TO for mixed heat transfer modes

Temperature control under Conduction + Convection + Radiation

29



Optimization of Rover Chassis : Alex Guibert
Introduction

R&TD Project
Additively Manufactured Rover Chassis with
Integrated Thermal Control for Extreme Cold
Environments
 Thermo-mechanical topology optimization of
the chassis

* Additively Manufactured heat switch

e Additively Manufactured structural insulation

Jet Propulsion Laboratory 30
8 California Institute of Technology




Motivations

* Develop a rover for extreme cold
environment

* Cold Lunar regions / Lunar permanently
shadowed regions (PSR) ~-230 °C/50 K

e Martian high latitudes ~-150 °C/120 K

- These environments are very challenging 2 =
for the avionics: operational temperature NASATPUASU. it 14, 2001
~-20°C/250 K

Daytime High Nighttime Low
— Active heating is needed to maintain the T [T O T T [
Mean Surface 107, 380 225 -153 120 -243
temperature Equator
(0° Latitude) 122 395 253 -158 18 -252
. . o e . . Mid-Latitudes 77 350 171 -143 130 -225
Objective: minimizing the amount of energy  poes 43 230 48 63 210 81
Dark Polar Crater -233 40 -387 -233 40 -387

needed while satisfying the structural
requirements

Lunar surface temperatures based on location, Heiken, 1991
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Baseline

Intrepid planetary mission concept study
from 2020

Design domain and loading conditions
Mass of the mast ~ 120 kg
Mass of batteries + electronics ~ 230 kg

245 m

Intrepid Planetary Mission Concept Study Report, JPL/ASU, 2020
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Approach

Coupling of the thermal and structural
disciplines to maximize the overall

performance
Level-set topology optimization

Efficient implementation for large scale
multiphysics optimization (parallel computing,
low-level programming language for backend

computation...)

Experimental validation

$

FENICS
ProJeCt

=PETSc
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Preliminary results

Maximization of the stiffness
Subject to a volume requirement

Titanium
Mass ~ 300 kg

34
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Next steps

Thermo-mechanical topology optimization of the rover chassis
Validation through prototypes

More complex loading conditions: launch, uneven surfaces...

oolof Eatthand .
LT Explotation 35



Conclusions

« Conflicting multiphysics environments can create
unintuitive design space.

« Topology Optimization can consider coupled
multiphysics effects, leading to the overall optimum
design.

\ ) @ﬂﬂf]ﬂa
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- @ LG Energy Solution

' | B Lawrence Livermore @\ ¢
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http://m2do.ucsd.edu/software/

Engineering mechanics

Mathematical
methods

Computer
sciences
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