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Introduction

• In many practical aerospace systems we encounter multiple, 
overlapping control effectors.
– Aerosurfaces (aircraft, entry vehicles)
– Thrust vectoring (launch vehicles, high-performance aircraft)
– Reaction controls (spacecraft, entry vehicles)

• Control allocation schemes are intended to replace multiple controls 
with a fewer number of virtual controls in some optimal way.

Image: NASA

Image: NASA Image: NASA

Image: NASA

Image: NASA



Virtual Controls (I)
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• Consider the simplified vehicle dynamics

with or without some set of actuator dynamics.

• Let’s simplify the system to the form

where 

in the usual sense.



Virtual Controls (II)
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• The input sensitivity matrix B maps the actual controls u onto the 
controlled degrees of freedom, for example, the accelerations.
– Usually,                   is not square!

• We would like to replace Bu with a virtual control v, to “square up” the 
system with respect to some selected degrees of freedom.

• The control allocation problem is finding a unique u of all the possible 
solutions that satisfy v = Bu :

• The constrained control allocation problem introduces a constrained 
set of controls u:



Motivation
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• Control allocation is desirable because it eliminates redundant degrees 
of freedom and simplifies the design problem.
– General MIMO techniques can also be used, but
– Human pilots and many practical/classical control laws are SISO 

(e.g., 3 separate axes with limited cross-connects).

• It is straightforward to solve the control allocation problem if
– the moments [accelerations] are linear in the controls:

– the controls are unconstrained; or
– the constraints are geometrically simple; e.g.,              .

• The formal theory of control allocation by W.C. Durham1 and his 
students in the 1990s.
– Ad-hoc and semi-formal methods were used in the 1960s and on.
– Lallman2 had introduced a pseudocontrols method in the 1980s.

[1] Durham, W., Constrained Control Allocation, J. Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp. 717-725.
[2] Lallman, F.J., Relative Control Effectiveness Technique With Application to Airplane Control Cooridination, NASA TP-2416, 1985.



• F/A-18 HARV Aircraft
– High angle of attack research vehicle operated at 

NASA AFRC* from 1987-1996
– Simplified attitude dynamics† are given by:

– The control effectors are left and right horizontal tail, 
left and right aileron, combined rudder, left and right 
trailing edge flaps, and 3 thrust vectoring vanes.

– The control system operates on the roll, pitch, and 
yaw rates.

– The B matrix has units of normalized aero 
coefficients.

– Limits are asymmetric.

Example – HARV
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*Formely NASA Dryden Flight Research Center (DFRC).
†Actuator dynamics are neglected in this example, and l=b=c. 
[3] Bordignon, K., Constrained Control Allocation for Systems with Redundant Control Effectors, PhD 
Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 1996. 

F/A-18 High Angle-of-Attack Research Vehicle (HARV)

Image: NASA

Linearized flight condition Effector min (deg) max (deg)
u1 R Horiz Tail -24.0 +10.5
u2 L Horiz Tail -24.0 +10.5
u3 Right Aileron -30.0 +30.0
u4 Left Aileron -30.0 +30.0
u5 Combined Rudder -30.0 +30.0
u6 R Trail Edge Flap -8.0 +45.0
u7 L Trail Edge Flap -8.0 +45.0
u8 Roll TVC Vane -30.0 +30.0
u9 Pitch TVC Vane -30.0 +30.0
u10 Yaw TVC Vane -30.0 +30.0

HARV Control Limits, adapted from Bordignon [3]



Example: Apollo LM
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• Apollo Lunar Module (LM)
– 16 RCS thrust chamber assemblies (TCAs) 

in 2 (A/B) strings and 4 quads
– 6-DoF rigid-body dynamics:

– Firing commands given by 
– Production autopilot used multiple firing 

tables with selectable 2-jet or 4-jet modes 
and fault cases.

Apollo 11 LM Eagle, July 20, 1969

Image: NASA

[4] Apollo Operations Handbook, Lunar Module. LM 11 and Subsequent – Volume II: Operational 
Procedures, LM790-3-LM, Section 4.4.3, Grumman Aerospace, 1971.

LM Jet Geometry [4]

Rotation

Translation



Example: NASA SLS
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• Human-rated launch vehicle for large-scale 
(“exploration-class”) crew and cargo access

• First flight November 16, 2022
• 4 RS-25E core stage engines (CSEs) + 2 5-segment 

SRMs, 6 engines x 2 axes = 12 DoF
• Elliptical limits, on-line reconfiguration5

• Control-structure interaction and servoelasticity6
NASA Artemis I, Nov 16, 2022

Image: NASA

TVC angle 
change in body 

frame

Dynamic moment 

[5] Orr, J., Wall, J., VanZwieten, T., and Hall, C., Space Launch System Ascent Flight Control Design, American Astronautical 
Society Guidance, Navigation, and Control Conference, Breckenridge, CO, AAS 14-038, 2014.
[6] Orr, J., Wall, J., and Barrows, T., Simulation-Based Analysis and Prediction of Thrust Vector Servoelastic Coupling, American 
Astronautical Society Guidance, Navigation, and Control Conference, Breckenridge, CO, AAS 20-091, 2020.



Control Allocation
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• Given a desired virtual control v, find a u that is “optimal”.

• This simplifies our design problem.  Ideally, we can find a      such 
that               (the command).

• There are usually n=3 controlled DoF.
• For the unconstrained case, a solution always exists for arbitrary    if 

• The solution is not unique.

IMUVehicleActuators

Control 
Law

Control 
Allocator

Angular rate

Virtual control

Rate command

Controlled System



Pseudoinverse Solutions
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• It is common to solve the equation              using a pseudoinverse.
– This is a linear, least-squares solution.
– It does not have knowledge of the constraints.
– There are many right generalized inverses             .

• A generalized inverse is any matrix      that satisfies              .
– If                and              , then                                  .

• A generalized inverse has at most                free parameters, but 
usually far fewer.

• This matrix is sometimes called the allocator matrix.

• A very common generalized inverse is the Weighted Least Squares 
(WLS) inverse.



The Weighted Least Squares WLS Allocator
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• The WLS allocator minimizes the weighted 2-norm of the controls:

• The weight matrix                is used to penalize individual controls.
• The optimal solution is

• The weight matrix can be SPSD so long as              is nonsingular.

• A generalized inverse has n linearly independent columns     .  

• For              , the WLS allocator becomes the Moore-Penrose inverse.
– This minimizes the norm of the control vector,        .
– The solution (columns    ) are orthogonal to the null space of B.
– This is an important feature for secondary objectives.



The Null Space – Titan II GLV
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• Since             there must exist a null space of 
dimension           .
– This is the set of all vectors 

– There are             waste directions in the m-space
that generate no net moment (but create internal 
loads).

• Sometimes the null space is geometrically obvious.
• The null space turns out to be very useful.

Image: NASA

Titan II Gemini Launch Vehicle (GLV)

E1 E2



The Attainable Moment Set (AMS)
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• The limits can be written in terms of the control vector    :

• Each of these expressions defines a halfspace in an m-dimensional 
space (the size of the controls), bounded by a hyperplane.

• Symmetric constraints              are a special case.
• There are 2m inequalities, forming a polytope (a convex set).
• If there are no unlimited controls, the set is both closed and bounded.



The Attainable Moment Set (AMS)
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• The set of all possible controls is called the admissible set.

• This set has an image in        :
• Convexity is preserved under linear transformations.

– The set     is called the attainable moment set.
• For any point within    , there exists a u that satisfies the constraints.   

*Note that for the linear problem, the geometry 
is a polytope with facets, edges, and vertices.
The figure shown is general.

Linear inequality constraint 
(polytope)



Constrained Control Allocation
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• Given a desired virtual control v, find a u that is “close” to the desired 
moment, in some sense.

– Minimizing                   (a QP) does not guarantee collinearity!

• Direct control allocation finds          such that 

– and      is maximized, i.e., the maximum admissible moment in the 
direction desired.

– The solution is                   if          , or u otherwise.
– This can be cast as an LP and solved using the simplex 

algorithm.

• There are numerous other algorithms, each with their own 
advantages and drawbacks.



Why Not Just Use Plain Old WLS?
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• A generalized inverse cannot access all of the moments.
– This result is counter-intuitive and was first proved by Durham2.
– This applies for any convex constraint with n>1.
– An allocator that is linear is restricted to an n-dimensional 

subspace of the m controls.
– This can be overcome using           (via weighting, or “tailoring”).

[2] Durham, W., Constrained Control Allocation, J. Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp. 717-725.

Thrust vectoring example
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Trivial example n=2, m=3



» System is linearized at                                                                    .
– There are m=10 effectors and 3 degrees of freedom.
– The M matrix is 3x10.  

– In aircraft applications, it is common to work in “moment” space defined by M.
– The M (or B) matrix, combined with limits, gives the [linear] control capability.

Example – HARV Dynamics
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Data adapted from Bordignon [3]

[ft·lbf/radian]

Effector min (deg) max (deg)
u1 R Horiz Tail -24.0 +10.5
u2 L Horiz Tail -24.0 +10.5
u3 Right Aileron -30.0 +30.0
u4 Left Aileron -30.0 +30.0
u5 Combined Rudder -30.0 +30.0
u6 R Trail Edge Flap -8.0 +45.0
u7 L Trail Edge Flap -8.0 +45.0
u8 Roll TVC Vane -30.0 +30.0
u9 Pitch TVC Vane -30.0 +30.0
u10 Yaw TVC Vane -30.0 +30.0

HARV Control Limits, adapted from Bordignon [3]

M

HARV AMS, computed using qcat [7]

[7] Härkegård, O., Quadratic Programming Control Allocation Toolbox for MATLAB, v.1.21, Linköping University, Sweden, August 2004.

MP inverse
13% efficient



Example – Apollo LM (3-DoF)
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• Apollo 12 LM Pre-PDI configuration, all jets available
– Consider only the rotational dynamics.
– Let the control vector be jet on-times       :

– This solution is found using simplex10 (LP) or NNLS11.
– Solutions with                 (below MIB) are clipped or 

redistributed.
– Minimum rate increment can be found using the same 

techniques used to find the AMS.

[8] “CSM/LM Spacecraft Operational Data Book, Volume III: Mass Properties, Rev. 2,” NASA TM X-68968, 1969.
[9] Apollo Operations Handbook, Lunar Module. LM 10 and Subsequent – Volume I: Subsystems Data, LM790-3-LM, Section 2.4, Grumman Aerospace, 1971.
[10] Bodson, M., Evaluation of Optimization Methods for Control Allocation, AIAA Guidance, Navigation, and Control Conference, AIAA-2001-4223, August 2001.
[11] Lawson and Hanson, Solving Least Squares Problems, Prentice-Hall, 1974.



Example – Space Launch System
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• Optimal-weighted online WLS allocator.12

• The problem is a QCQP but linearity is 
required for control-structure analysis.

• Elliptical (circular) constraints of differing 
sizes and control effectiveness.13

• Gives back unneeded roll capability to 
maximize pitch-yaw authority.

• Null space augmentation14 was evaluated 
but found to be unnecessary.

[12] Wall, J., Control Allocation for Launch Vehicles With Multiple Engines Using a Weighted Pseudo-Inverse Approach, MSFC/EV40, January 26, 2011.
[13] Orr, J., and Wall, J., Linear Approximation to Optimal Control Allocation for Rocket Nozzles With Elliptical Constraints, AIAA 2011-6500, 2011.
[14] Orr, J., and Slegers, N., High-Efficiency Thrust Vector Control Allocation, AIAA JGCD, Vol. 37, No. 2, 2014, pp. 374-382.

Each engine maps to a 
disk in R3

Maximum pitch-yaw 
authority



Practical Saturation/Rate Limiting
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• The WLS allocator does not address saturation.
– A change of one element of u leads to a change in direction of v, 

in general.‡

– A change in the response leads to undesirable cross-axis 
coupling.

• Since the allocator P is linear, compute a scale factor c such that

‡Unless the change is in the null space.  This is the idea for null projection control allocation (NPCA).

TVC Example
(SLS Algorithm)

• The entire command is scaled linearly 
based on the largest effector value.

• The command is still formed from the range 
space of P.

• Coordinated rate limiting can be 
implemented by applying a scaling limit 
over a minor frame timestep.



Summary
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• Control allocation is a rich topic that can greatly improve capability of 
current and emerging aerospace systems.
– Electric aircraft, UAS, novel spacecraft, etc.
– Control of multiple objectives; e.g., structural loads, drag.

• This presentation has only summarized the theory and applications.
– There are numerous algorithms, formal, ad-hoc, and semi-formal:

• Cascaded inverses, null augmentation, minimum-variance 
weighting, preferred controls, daisy chaining…

– Some have significant advantages or dangerous caveats, 
depending on application.

• If the design doesn’t close… make sure the control allocation is 
efficient before changing the vehicle.



Questions?

Bill Benson
NASA Deputy Technical Fellow for Guidance Navigation & Control

william.w.benson@nasa.gov
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