# Marconnet Thermal & Energy Conversion Lab





### Amy Marconnet

Mechanical Engineering marconnet@purdue.edu engineering.purdue.edu/MTEC



https://www.energy.gov/eere

### https://www.3dprintingmedia.network

Sonsors &

Materials

https://greentransportation.info/ ev-ownership/safer/tesla-model-s-2013.html



https://datacenterfrontier.com/

### Electronics Cooling



Aerospace

https://phys.org/news/2009-12-materials-hypersonic-supersonic-hot-video.html
Battepies
Battepies

### Heterogeneous & Multi-Scale Systems



#### Metrology Development & Property Analysis

Thermal Management Solution Development

#### Fundamental Transport Phenomena Analysis



### **Thermal Challenges for (High Powered) Electronics**

#### INCREASING HEAT FLUXES DEMAND NEW COOLING SOLUTIONS

### TEMPERATURE DRIVES SIGNIFICANT PORTION OF FAILURES IN POWER ELECTRONIC DEVICES





 $\Delta T_i [K]$ 

### **High Thermal Conductivity Polymers**

### Alignment of polymer chains can lead to ultrahigh thermal conductivities



S. Shen, A. Henry, J. Tong, R. Zheng, and G. Chen, *Nature Nanotechnology: Letters*, 2010.

**Our Work**  $\int k_f$ 

### Dyneema Fiber thermal conductivity

### 25-30 W/mK

A.A. Candadai, J. A. Weibel, and A. M. Marconnet, *ACS Appl. Polym. Mater.* 2020

# **High Thermal Conductivity Polymers**

### **Thermal Conductivity: From Fibers to Fabrics**



Effective thermal conductivity reduces

A.A. Candadai, J. A. Weibel, and A. M. Marconnet, ACS Appl. Polym. Mater. 2020

# **New Thermal Metrology Technique**





### **Advanced Flexible Heat Spreaders**

Illustration of bending under self weight



<sup>\*</sup>For all general materials, **thickness = 500 μm** (approx. thickness of characterized fabrics)

A.A. Candadai, J. A. Weibel, and A. M. Marconnet, *ACS Appl. Polym. Mater.* 2020

# **Anisotropic Property Characterization**

The 1D IR Enhanced Angstrom method is extended to two dimensions for the measurement of thermal conductivity of films and sheets as a function of direction



Hahn J. *et al.*, A. Infrared microscopy enhanced Angstrom's method for thermal diffusivity of polymer monofilaments and films. J. Heat Transfer 141, (2019). DOI:10.1115/1.4043619



# **Anisotropic Property Characterization**

#### Isotropic, low k

#### Anisotropic, high k





- Characterize and optimize material properties for composite heat spreaders
- Integrate flexible high conductivity heat spreaders into wearable electronics or situations needing conformal heat spreading





# **PEKK-Carbon Fiber Composite**





#### Key advantages of our method:

- Orthotropic thermal conductivity resolved in a single measurement without significant sample preparation
- Measurements can be conducted in air (insensitive to convection)
- No knowledge of boundary conditions or heater power required
- Relatively insensitive to calibration of emissivity

# Li-Ion Battery: Thermal Management



# **C** Conventional Materials Characterization 13

#### ASTM D5470 Reference Bar Method



X. Hu, et al., "Thermal conductance enhancement of particle-filled thermal interface materials using carbon nanotube inclusions," in *The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM '04)*, 2004, pp. 63-69 Vol.1.

#### **Miniaturized Infrared Thermal Metrology** 14



Gaitonde, Nimmagadda, Marconnet: "Measurement of Thermal Conductance in Li-ion Batteries " Journal of Power Sources (2017). DOI: 10.1016/j.jpowsour.2017.01.019

Barako, M.T., Gao, Y., Won, Y., Marconnet, A., Asheghi, M., and Goodson, K.E., IEEE Transactions on Components, Packaging and Manufacturing Technology (2014). DOI: 10.1109/TCPMT.2014.2369371

Ref. Layer

2

Ref. Layer

Growth

S

Silicon

CNT Arra)

3

Position [mm]

Ref. Layer

4

Ref. Laye

Tip

Interface

Source

Heat







Gaitonde, Nimmagadda, **Marconnet**: "Measurement of Thermal Conductance in Li-ion Batteries " *Journal of Power Sources* (2017).







- Interfaces Measured: 8
- Pressure Range: 0.1-0.25 MPa
- Case Temperatures: 30-120 °C

Mean Thermal Conductance: 670 W/(m<sup>2</sup>K) Standard Deviation: 275 W/(m<sup>2</sup>K)



### **Beyond Steady State: Phase Change Materials** 1



# **Embedded Cooling + ML Optimization**

18



#### **Experimental Evaluation (in progress):**



References: Bhatasana & Marconnet, "Optimization of an Embedded Phase Change Material Cooling Strategy Using Machine Learning", *ITherm 2021* Bhatasana & Marconnet, "Machine-Learning Assisted Optimization Strategies for Phase Change Materials Embedded within Electronic Packages", *Applied Thermal Engineering*, 2021.

Bhatasana& Marconnet, Electronics Cooling Magazine, http://bit.ly/EmbeddedCooling

### **Beyond Conventional Optimization Strategies**

- Machine learning based optimization strategies (e.g., Genetic Algorithms) reduce time to optimize solution
- Reduced complexity models, such as ParaPower over COMSOL, increase efficiency and training Neural Networks on limited data sets can further enhance optimization



PCM Silicon

19

References: Bhatasana & Marconnet, "Optimization of an Embedded Phase Change Material Cooling Strategy Using Machine Learning", *ITherm 2021*Bhatasana & Marconnet, "Machine-Learning Assisted Optimization Strategies for Phase Change Materials Embedded within Electronic Packages", *Applied Thermal Engineering*, 2021.
Bhatasana& Marconnet, *Electronics Cooling Magazine*, <u>http://bit.ly/EmbeddedCooling</u>



# **High Powered Electronics**

Baseline Architecture

#### **Heating:**

Heat distributed across SiC dies



Convective Cooling (Coldplate) 50/50 WEG at 0.4 lpm  $\rightarrow$  5,000 W/m<sup>2</sup>K  $T_{in} = 65 \ ^{\circ}C$  Hybrid Active+Passive Cooling (1.5 Side Cooing)





# **Drive Cycle** $\rightarrow$ **Transient Heating**



$$F_{accleration} = ma$$

$$+ \begin{array}{c} & \downarrow 2200 \text{ kg} \\ + & \downarrow 0.015 \end{array}$$

$$F_{Total} \quad F_{rolling} = c_R mg$$

$$+ \\ F_{drag} = \frac{1}{2} \rho c_D AV^2$$

$$\downarrow 0.58 \text{ m}^2$$

98% efficiency 
$$\checkmark$$
 Regenerative  
breaking  
Heat Load =  $(1 - \eta) \times |P|$   
Heat Load =  $(1 - \eta) \times |VF|$ 



Hollis *et al.*, *Journal of Electronic Packaging*, 20201. <u>https://doi.org/10.1115/1.4052669</u> Drive Cycles: <u>https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-drive-schedules</u>



Average Elevated Temperature





| Metric                                  | SSC  | Foam |
|-----------------------------------------|------|------|
| $\overline{\Delta T_{max>65^{\circ}C}}$ | 30°C | 29°C |
| $\sigma(T_{max>65^{\circ}C})$           | 25°C | 11°C |



| Metric                           | SSC  | Foam |
|----------------------------------|------|------|
| $rac{\delta T}{\delta t_{max}}$ | 90°C | 43°C |







**Open Questions for PCM Optimization** 

 How much can we the reduce flow rate of the cooling fluid and achieve similar performance metrics?

• What is the optimum volume fraction of the PCM with foam?

 Can we reduce the weight and cost of the system while maintaining performance using the hybrid approach?



### **Thermal Switches**



 The lithium-ion batteries used in most of today's electric cars are most efficient at around the same temperature as humans, about 70 degrees Fahrenheit.

### **Dynamic and Continuous Thermal Switch**



Du, ..., Marconnet, and Ruan, Nat. Comm., 12, 4915 (2021). DOI:10.1038/s41467-021-25083-8



26

### Make and Break Contact → High Switching Ratio



#### **Continuously Variable Thermal Resistance** 27





# **Compressible Graphene Foam**





 Open cell foam structure deforms upon compression





# **Characterizing Thermal Properties**

- At each level of compression, emissivity map is re-calibrated
- Heat flow established across the sample
- Same analysis procedure is applied at every strain

#### Conductance

$$G_{sample} = \frac{q}{\Delta T} \approx \frac{k_{sample}}{L} = \frac{1}{R_{th}^{\prime\prime}}$$

#### **Conductance Ratio**

$$r = \frac{G_{Fully-Compressed}}{G_{uncompressed}}$$



Du et al., Nat. Comm., 12, 4915 (2021). DOI:10.1038/s41467-021-25083-8



### **Variable Thermal Conductance**



Conductance

$$G_{sample} = \frac{q}{\Delta T} \approx \frac{k_{sample}}{L} = \frac{1}{R_{th}^{\prime\prime}}$$

**Conductance Ratio** 

 $r = \frac{G_{Fully-Compressed}}{G_{uncompressed}}$ 

Du et al., Nat. Comm., 12, 4915 (2021). DOI:10.1038/s41467-021-25083-8



 $\Delta \mathbf{X}_{u}$ 

# **Thermo-Mechanical Modeling**





# **Research Program Overview**

Overarching Research Approach:

- Novel experimental metrology tools
- Multi-scale computational modeling
- Strategic, physics-based design and development of materials & systems

#### Thermofluids Interactions Flow in Dense Suspensions



#### Low Energy Desalination



Alsaati and Marconnet, Desalination, 2018.





#### **Confined Boiling**





### Transport Phenomena in Multi-scale, Heterogeneous Materials





# Summary

#### Move and Spread The Heat Advanced Packaging Materials

Fabrics with thermal conductivity of metals and flexibility of polymers

### New Metrology Tools

Measure thermal transport (thermal conductivity and interface resistances) for new materials for advanced packaging

### STORE AND CONTROL THE HEAT Passive Thermal Management with Phase Change Materials

Energy storage with PCMs can reduce temperatures and temperature oscillations during transient operation of a device

#### **Thermal Switches**

Transient thermal management can be aided with active control of heat transfer pathways

#### OTHER POTENTIAL AREAS OF MUTUAL INTEREST:

- Thermal management of batteries
- Inverse algorithms for hot spot detection with limited temperature sensors
- Two-phase flow and boiling in confined geometries
- Metrology development and materials development/characterization

• ...

#### Marconnet@Purdue.edu

https://engineering.purdue.edu/MTEC

# **Engineering Materials for Thermal Challenges**





### Amy Marconnet

Mechanical Engineering marconnet@purdue.edu engineering.purdue.edu/MTEC

