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» Entry, Descent, and Landing and the need for control
» Guidance

» Navigation
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» Other aeroassist missions
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EDL AND THE NEED FOR CONTROL



Entry, Descent, and Landing Concept of Operations

Sky Crane Detail

AS%», Atitude: ~66 feet (~20 meters)
,‘@ Velocity: ~1.7 mph (~0.75 meter/sec)

" Time: Entry + ~400 sec
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Entry Interface Altitude: 0
Velocity: ~1.7 mph
(~0.75 meter/sec)
Time: Entry + ~416 sec
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Altitude: ;7 miles (-hkm)
Velocity: ~900 mph

(~405 meters/sec)

Time: Entry + ~254 sec

Credit: AIAA 2017-0245



Effect of Lift on Trajectory

Credit: Borrowed from Cruz et al. Summer Lecture “Introduction to Trajectories”
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Effect of Lift on Max Acceleration

Credit: Borrowed from Cruz et al. Summer Lecture “Introduction to Trajectories”

Load Factor

16 S
12
n 8 |
(g¢)
/

- — Lift Up: l/D=015

4 : 7 Baseline: L/D=0

- = == Lift Down: L/D=0.15

0 1,000 2,000 3,000 4,000 5,000 6,000

V (m/s)



Lift in an EDL Vehicle

Credit: AAS 19-221
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Blunt Bodies

« Low L/D Vehicles (<0.5)

* Drag dominates

« Positive lift generated at
negative angles of attack

( o = () at Full-Lift-Up)

IXV Experiment Vehicle
(2015)

Credit: ESA

Mid L/D Vehciles

Mid L/D Vehicles (0.5-
0.8)

Trim at higher angle of
attack (~55 deq)

Higher L/D Vehicles

L/D around 1

Credit: NASA




Credit: Adapted from AIAA 2022-0609
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GUIDANCE



Types of Entry Guidance Schemes

» Analytic schemes
* @Gains for guidance based on pre-generated reference profiles
* Non-iterative and efficient code

» Numerical predictor-corrector (NPC) schemes
* Numerically integrates equations of motion on-the-fly
* Iterative code and adaptable to modern flight software
e Can be robust to uncertainties in atmosphere and aerodynamics

Exit
Condition
Goal

Aeroshell Credit: AIAA 2017-0245
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Apollo Guidance
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» Reference-following
» Bank angle modulation
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Skip-Rentry

Controlled Climb to

Pull-up Atmospheric Exit

Maneuver

Initial
Entry . -

o e
J {3“—? a;

p
¢ > -
2 » 1 ), -
| | /e . %
’ \ . : v »
s ) 40 E . i
d Y & : . M

Ballistic Coast (Skip)

Final® 3 Re-entry

Entry/ \~ Glide

Landing

*" b L A B Site

-
”~r
‘N .

> Use L/D to provide lift to skip out of the atmosphere and extend range

» Effectively the system used by Apollo and other lunar return missions
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Space Shuttle Guidance
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» Reference-following
» Bank angle modulation
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Guidance for Mars Missions

Sky Crane Detail

ﬁ Altitude: ~66 feet (~20 meters)
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Entry Interface Altitude: 0
Velocity: ~1.7 mph
(~0.75 meter/sec)
Time: Entry + ~416 sec
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(~405 meters/sec)
Time: Entry + ~254 sec

Credit: AIAA 2017-0245
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Guidance for Mars Missions
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Altitude: ~7 miles (~11 km)
Velocity: ~900 mph

(~405 meters/sec)
Time: Entry + ~254 sec

Parachute Deploy Sequence Trigger based on
“Range Trigger” instead of “Velocity Trigger”

15



\' 2012 curiosity

| 20x6.5km 2008 Phoenix
100 x 20 km

~
J ===
g
/

Mars 2020
12 x 8.5 km |54

1997 Pathfinder

200 x 70 km [S9R

—

1976 Viking
280 x 103 km




Numerical Predictor-Correctors
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Credit: NASA Credit: IEEE 2010.5447010

» Numerically predict conditions based on current conditions, then
correct the controls to get desired target

» Used for EFT-1 to target landing site (guidance scheme was
PredGuid)
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NAVIGATION



Dead-Reckoning

Credit: NASA AAS 16-092
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» Integrating Inertial Measurement Unit data to calculate position,
velocity, and attitude

Ship Dead-Reckoning Tools

/

» Very typical and used on most missions with navigation systems.
G’s from accelerometer used for even non-active navigation
systems

> Susceptible to drift
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More Advanced Navigation

Credit: Adapted from AIAA 2022-0609
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> Integrate data from various types in a navigation filter
» Consists of batch or Kalman filters

» Past and present NASA projects: ALHAT, COBALT, SPLICE, etc.
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CONTROL
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Reaction Control Systems
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Credit: NASA AAS 16-092 P/ ‘,

Credit: NASA/JPL

» Used for Apollo, Space Shuttle, and Mars missions

» Small AV applied at a moment arm moves the vehicle in pitch,
vaw, or roll planes. Usually, has been used for rolling (really
banking) vehicles during active guidance
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Aerodynamics Surfaces

ADEPT — Mechanical Deployable
Credit: Pterodactyl Study

HIAD — Morphing Inflatable

Centerbody

Morphing cables

Credit: AIAA 2013-2809

Credit: A. Slagle Thesis

Y

Space Shuttle has elevons and flaps, but not used during hypersonic entry

Flaps or trim tabs can extend beyond outer mold line to provide pitching or yawing
control

» Vehicles could morph shapes to change ballistic coefficient

A\
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OTHER AEROASSIST APPLICATIONS



AEROBRAKING



» First demonstrated by the Magella
mission in Venus at the end-of-life
extension

» Conducted on Mars Odyssey, Mars
Reconnaissance Orbiter, ExoMars |
TGO, and some others |

Credit: NASA

2016-05-0100:00 ExoMars TGO > No entry vehicle aeroshell or
heatshield

0.00km/s 13,988,751km Credit: ESA
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AEROCAPTURE



Motivation

» Mission to the Ice Giants (Uranus and Neptune)

* Direct mission to the planet (16 years) or with Jupiter Fly-by (14-15 years)
* Orbital insertion maneuver: 1000+ m/s; propellant mass fraction is 55-70%

Launch
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Credit: NASA

Credit: JAXA

Credit: APL

 What if you could use the atmosphere of the planetary body to do most of the
orbital insertion AV?

 What if the on-orbit mass could be increased by 40%?
 What if the interplanetary cruise duration could be cut by 2-5 years?
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What is Aerocapture?

Orbital maneuver where the drag from a
single atmospheric pass provides
deceleration for orbital insertion.
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It is not aerobraking, where the spacecraft
dips into the atmosphere several times before

the target orbit is reached.
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Updates to Entry Vehicle Configurations, Guidance
Schemes, and Control Methods

Sphere-Cone Rigid
Aeroshell

2012 Mars
Science
Laboratory Credit: NASA

Mid L/D shapes ¢ : Credit; NASA Credit: NASA
L/D > 0.5 \
Higher control authority needed

- T 5 OVIAESATS
“Spherical Rigid Aeroshell
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AEROGRAVITY ASSIST



Gravity Assist + Aerodynamics
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Fig. 1 Aerogravity-assist maneuver in a planetary atmosphert
End Active
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Credit; J. Arnold Summer 2021 Presentation A tmospheric Exit

/"/Sphere of Influence (SOI)
« (Voo = 1.64 km/s)

Crodit AAS 21201 e
» Allows for large orbital maneuverability without fuel usage

> Potential application for Enceladus orbiter/lander using Titan as a
fly-by body
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Summary

» Control authority can make heavily affect EDL trajectories in range
traveled, peak deceleration, and heat flux/load

» Guidance schemes that have been mostly implemented have
been analytical and reference-following, but numerical
predictor—corrector options are coming

» Navigation systems have been IMU based, but more precise
landing requires integrating a plethora of sensor data that
observe position, velocity, attitude, and environmental conditions

» Control systems include reaction control systems (RCS),
aerodynamic surfaces (like flaps), morphing shapes etc.

» GNC systems also affect flight for other aeroassist missions, such
as aerobraking, aerocapture, and aerogravity-assist
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