
2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Introduction

•Welcome to another “software short” video

•Todays topic is called “what is software common cause failure and
“how common is it” -- that’s just what I’m going to go over

•By way of a few powerpoint slides I’ll talk about
•What is software common cause and why even care?
•Through a historical study statistics

• When and How software has failed

• Why it as a failed, and where the code it as failed (surprisingly little literature on the subjedt!)

•Why care? Software controls everything – especially when it’s safety
critical
•Really this is a talk about software/automation failures in general, especially

in aerospace, a lessons learned summary on how we can do things better

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

2

Software Common Cause Failures
• What is Software “Common Cause” or “Common Mode” Failure?

• In Hardware – multiple copies of hardware exist for fault tolerance (i.e. 3 “strings”)

• In Software, the same software load often runs on these multiple processors

• In this case, a single software failure normally would affect all strings in the same way at the
same time – this is a “common cause failure”

• If only one processor is used, any software failure is “common cause”

• Why Care?
• A single software load is a single point of failure (zero fault tolerant)

• In safety-critical systems, lives depend on software behaving as expected

• Consider two classes of software failures:
• “Fail-Silent” – Computers all stop outputting, i.e “crash”

• “Erroneous-Output” – Software/automation does the wrong thing

• Both should be considered when designing for fault tolerance

• Why differentiate?
• It is easier to determine if the software has stopped (watchdog timer)

• How to determine if the automation is doing something wrong? (Human, backup/monitor
software)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Software Failure Categories & Common Mitigations

• Fail-Silent Cause Examples (no output)
• Operating System Halt - Memory access violations, arithmetic errors, coding/logic errors

• CPU Hog – Process Starvation Infinite loop, priority inversion, extreme latencies

• Erroneous Output Causes Examples (wrong output)
• Coding/Logic Error - Missing Requirements, unexpected situations, insufficient modeling
• Data Parameter Error - misconfigured data, units errors, lack of precision, sign flip
• Unanticipated / Erroneous Sensor Input
• Erroneous Command Input - Operator / Procedural Error

• In Spaceflight, dynamic phases are riskiest due to short time-to-criticality
• Ascent, Rendezvous, Entry, Loss/Delayed Communication

• Common mitigations during these times

• Dissimilar or reduced size backup software, manual piloting / human-in-the-loop

• More options during less dynamic times - software upload, reboot, crew/ground diagnosis

• Mitigations should be considered in relation to time and safety criticality

3

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Key NASA Requirements for Software Fault Tolerance

• NPR 8705.2C: HUMAN-RATING REQUIREMENTS FOR SPACE SYSTEMS
• 3.2.3 The space system shall provide at least single failure tolerance to catastrophic events, with

specific levels of failure tolerance and implementation (similar or dissimilar redundancy) derived via
an integration of the design and safety analysis.

• 3.2.7 The space system shall provide the capability to mitigate the hazardous behavior of critical
software where the hazardous behavior would result in a catastrophic event.

• 3.3.2 The crewed space system shall provide the capability for the crew to manually override higher
level software control and automation (such as automated abort initiation, configuration change,
and mode change) when the transition to manual control of the system will not cause a catastrophic
event.

• NPR 7150.2D: NASA SOFTWARE ENGINEERING REQUIREMENTS
• 3.7.3 If a project has safety-critical software or mission-critical software, the project manager shall

implement the following items in the software: [SWE-134] …

• No single software event or action is allowed to initiate an identified hazard. …

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

1962 Mariner 1
Mission – Atlas-
Agena

1985-87 Therac-25 1994 Pegasus XL
STEP-1

1999 Titan IV B
Centaur

2005 CryoSat-1 2012 Red Wings
Flight 9268 TU-204
crash

2019 Beresheet

1965 Gemini 3 1988 Phobos-1 1994 Pegasus
HAPS

2000 Zenit 3SL 2005 DART 2015 Airbus
A400M test flight

2020 Amazon Web
Service (AWS)
Kinesis

1965 Gemini 5 1988 Soyuz TM-5 1996 Ariane 5
Maiden Flight

2001 Pegasus
XL/HyperX Launch
Vehicle / X-43A

2006 Mars Global
Surveyor (MGS)

2015 SpaceX CRS-7 2020 BD Alaris™️
Infusion Pump

1968 Apollo 8 1991 Aries - Red
Tigress I

1997 Pathfinder 2001 STS-108
through 110

2007 F22 First
Deployment

2016 Hitomi X-ray
space telescope

2021 Global
Facebook Outage

1969 Apollo 10 1991 Patriot
Missile

1998 Delta III 2003 Multidata
Systems Radiation
Machine

2008 STS-124 2017 SpaceX CRS-
10

2021 ISS Erroneous
Thruster

1981 STS-1 1992 F-22 Raptor 1999 Mars Polar
Lander

2003 Soyuz - TMA-
1

2008 Quantas
Flight 72, Airbus
A330-303

2018, 2019 737
Max crash

1982 Viking-1 1994 Clementine
Lunar Mission

1999 Mars Climate
Orbiter

2003 North
American Electric
Power Grid

2008 B-2 Spirit -
Guam crash

2019 Boeing
Orbital Flight Test
(OFT)

How Common Are Software Failures?

47 Historic Incidents Studied & Characterized – mainly Aerospace/DoD

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Dataset Industry & Impact Breakdown

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Incident Statistics – Erroneous vs. Fail Silent

Takeaway:

• Historically, erroneous output situations were

much more prevalent than fail-silent cases

• Roughly 90-10% rule of thumb

Fault-tolerant Design Tip:

• Design should consider relative likelihoods

of these manifestations

• Systems should consider the question,

“What is the risk of the software doing

something wrong?” at critical moments

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Incident Statistics – Software Architecture Error Location

Takeaway(s):

• Coding/logic (includes missing requirements and

unknowns) and data configuration errors account for

most software incidents

• Input Errors – Command or Sensor Input Accounted

for 23% of errors

Fault-tolerant Code Tips:

• Project should test according to likelihoods

• Code/Logic – off-nominal testing, peer review, unit

testing, increased simulation/modeling

• Data Misconfiguration – data validation prior to use,

system expert review

• Input Errors – Off-nominal or random input test

generation

– Sensor input –hardware-in-the-loop testing

– Command input – validation, processes/procedures

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Reboot Recoverability Likelihood
Erroneous vs. Fail Silent

Takeaways:

• Rebooting is predominantly ineffective to clear/recover

from erroneous output situations

• Rebooting is a partial solution to clear fail-silent errors

Fault-tolerant Design Tip:

• Do not rely on reboot to clear all software faults

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Incident Statistics – Absence of Code

Missing Code may arise from:
• Missing requirements
• Unanticipated situation
• Insufficient understanding or modeling of real world

• Adding code could have corrected the “missing code”
incidents – in hindsight

Takeaways:

• Even fully tested code does not uncover errors that arise from missing code/unanticipated situations

• Hard to test code that is not there(!)

Fault-tolerant Design Tip:

• Projects should reserve test time to create off-

nominal or unexpected conditions

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Incident Statistics – “Unknown Unknowns”

Takeaways:

• Categorizing “unknown-unknowns” is highly subjective

• Included here:
– unknown aero/handling, physics

– Insufficient modeling

– highly unusual input

– undetermined behavior in the presence of faults or multiple

failures

Fault-tolerant Design Tip:

• Backup systems can be considered to protect for

“unknown- unknowns”

• Projects should actively work to balance risk between

“knowing everything” and project constraints

(budget/schedule)

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

References

• Prokop, Lorraine, E., “Software Error Incident Categorizations in Aerospace”
[Manuscript under consideration]. NASA Engineering and Safety Center. 2023.

2023, Lorraine Prokop, Ph.D, NASA Technical Fellow for Software

Conclusion

• Software “common cause” or “common mode” errors occur when a single software error results in
unexpected behavior, even if running on multiple strings

• Software Errors manifest in two ways: Silent or Erroneous

• Study of historical software incidents indicates the following
• Erroneous output is much more prevalent – roughly 90% of the incidents

• Rebooting is largely ineffective to recover from erroneous situations, and partially effective for silent software

• Software logic errors are most common, then data config, and 23% of errors arise from input

• Missing Code accounted for 36% of historic software errors

• “Unknown-unknowns” account for roughly 20% of software error incidents

• Software should be architected for redundancy based on safety-criticality and time-to-effect with these
statistics in mind – lessons learned:
• Consider the Erroneous Case much more than failing silent

• Don’t rely on reboot to recover

• “test like you fly” – use real hardware as much as possible in real-life test cases

• Leave time for off-nominal testing to expose unanticipated things

• Validate commands and data prior to use

• Consider using backup software for critical events

13

