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Goals of this seminar

1. Provide a foundation in ML and resources for you to learn on your own 

• Machine learning is a very broad field, impossible to teach everything here


• Instead, introduce core principles and vocabulary 


• Resources for self-learning  

2. Demonstrate recent examples of ML in my daily work at NASA 

• How to approach typical problems


• Combine physical intuition and knowledge with ML principles


• Gaussian Process regression

2

“Machine Learning is easy, but also Machine Learning is hard.”

- Levi Walker
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A formal definition: A computer program is said to learn from experience  with respect to some class of tasks  and 
performance measure , if its performance at tasks in , as measured by , improves with experience [1].

E T
P T P

What do we mean by “learning”?

3

1. Tom M. Mitchell.  Machine Learning.  McGraw-Hill, 1997.  
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Stockfish

AlphaZero
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Performance Measure: 
Number of wins


Experience: 
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agains opponents and self.
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Stockfish

AlphaZero

Task: 

Win chess match.


Performance Measure: 
Number of wins


Experience: 

Human logic and intuition.

Task: 

Win chess match.


Performance Measure: 
Number of wins


Experience:

Playing chess matches 
agains opponents and self.

Not Machine Learning 

Cannot automatically improve performance

based on additional experience.
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Types of learning problems

4

Peng, Jury, Donnes, Ciurtin.  Frontiers in Pharmacology 12:720694, 2021.
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Regression in a nutshell 

Learn a functional relationship (model) between data inputs and outputs to make predictions for unseen inputs 

Supervised Learning Framework 

• Given a dataset: 


• Given a (possibly parametric) model: 


• Find a model that best approximates the underlying 
relationship between inputs and outputs 
 

𝒟 = {(xi, yi) : xi ∈ Ω, yi = f(xi)}

y = ̂f(x; θ)

̂f(x; θ*) ≈ f(x)

5

Data

Model

Predictions

Output

Input
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• Find a model that best approximates the underlying 
relationship between inputs and outputs 
 

𝒟 = {(xi, yi) : xi ∈ Ω, yi = f(xi)}
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Key Questions 

1. How do we know if a model is “good” (much less “best”)?


2. What about noisy data?



2023 EDL Summer Seminar Series

Many models out there!

6

Examples: 

• Linear Models


• Support Vector Machines


• Gaussian Processes


• Neural Networks


• Decision Trees 
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6

Examples: 

• Linear Models


• Support Vector Machines


• Gaussian Processes


• Neural Networks


• Decision Trees 

Choice depends on multiple factors: 

• Training and evaluation cost


• Implementation and deployment


• Scalability


• Treatment of uncertainty
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Given the data on the right, what are our initial thoughts? 

• Observations generally increase with increasing input values


• Trend appears linear with a positive slope and negative intercept


• The trend is not perfect, noise or other unknown feature 

Model assumption: response is linear with nonzero intercept 
 
                    
 
 

y = ̂f(x; w0, w1) = w0 + w1x

Linear regression

7
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Data

Linear Models

How do we find the “best” model?
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Loss functions

Loss functions are a measure of our model performance on supervised learning tasks


• General rule is to make them positive and invariant to dataset size


• Decreasing loss means better model performance  

For continuous input spaces, most loss functions take the following form: 

8

Loss as function 
of model parameters  
for given model 

θ
̂f(x; θ)

ℒ(θ)[ ̂f ] = 𝔼p(x)l( f(x), ̂f(x; θ)) ≡ ∫Ω
l( f(x), ̂f(x; θ)) p(x) dx ≈

1
N ∑

(xi,yi)∈𝒟

l(yi, ̂f(xi; θ))

Expected model error over  
the input probability distribution 

 for given error model p(x) l

Definition of the expectation 
of  on l p(x)

“Empirical” loss, evaluated on 
available dataset
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Example loss functions

Recall ℒ(θ)[ ̂f ] =
1
N ∑

(xi,yi)∈𝒟

l(yi, ̂f(xi; θ))

9

Mean Squared Error (MSE) 
l(y, ̂y) = (y − ̂y)2

Mean Absolute Error (MAE) 
l(y, ̂y) = |y − ̂y |

Cross-Entropy 
l(y, ̂y) = − [y ln ̂y + (1 − y)ln(1 − ̂y)]

y = 1 y = 0

Model outputs are predicted values. Model outputs are predicted probabilities.
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Example loss functions

Recall ℒ(θ)[ ̂f ] =
1
N ∑
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9

Mean Squared Error (MSE) 
l(y, ̂y) = (y − ̂y)2

Mean Absolute Error (MAE) 
l(y, ̂y) = |y − ̂y |

Cross-Entropy 
l(y, ̂y) = − [y ln ̂y + (1 − y)ln(1 − ̂y)]

y = 1 y = 0

Model outputs are predicted values. Model outputs are predicted probabilities.

Choice depends on type of data and model.
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Linear Models

Linear least squares regression

• Revisiting our linear model, the MSE loss is given as 
 




• Best model is one that minimizes the loss, can derive 
this analytically for linear least squares loss 
 

 

 

ℒ(w0, w1) =
1
N

N

∑
i=1

[yi − (w0 + w1xi)]2

∂ℒ
∂w0

= 0 ⟹ w0 = ȳ − w1x̄

∂ℒ
∂w1

= 0 ⟹ w1 =
xy − xy
x2 − x2

10

How do we find the “best” model?

Data
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How do we find the “best” model?

“Best” Fit

Data
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Learning nonlinear responses with linear model

• In general, linear model only needs to be linear in the parameters 
 

 

• We can write this compactly as  
 

 

• This leads to a least-squares loss  
 

 

• Minimizing the loss leads to model of best fit 
 

̂f(x) = w0h0(x) + w1h1(x) + w2h2(x) + …

̂f(x) = w ⋅ h(x), w = [w0, w1, w2, …]T, h(x) = [h0(x), h1(x), h2(x), …]T

ℒ(w) =
1
N

∥y − Hw∥2
2, y = [y0, …, yN]T, H = [h(x0), …, h(xN)]

w = (HTH)−1HTy

11

Data

Model

Prediction

Output

Input
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Polynomial regression

• Polynomial regression is a linear problem!   
(think in terms of the weights) 
 

 ̂f(w) = w ⋅ h(x), hk(x) = xk

• Using a least-squares loss function, we obtain 
 

 w = (HTH)HTy

12

Data
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3rd-order 
polynomial
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12th-order 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Generalization and overfitting

13

Order 0

Order 1

Order 2

Order 3

Order 5

Order 7

Data

decreasing loss with

increasing polynomial order

Least-squares loss favors model complexity over predictability!
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Data
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poor predictability outside 
data set for complex models 
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Generalization and overfitting

13

Order 0

Order 1

Order 2

Order 3

Order 5

Order 7

Data

decreasing loss with

increasing polynomial order

Least-squares loss favors model complexity over predictability!

poor predictability outside 
data set for complex models 

We want to optimize the model complexity 
to generalize well to new data 

without overfitting our current data.
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Validation data

Idea: hold back some validation data as a surrogate for unseen data to check model’s generalizability

14

training data

validation data

training loss

validation loss

overfitting
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Cross-validation

• Validation loss is sensitive to which data we choose to hold back


• Can improve on this idea by taking the average validation loss 
over multiple choices of train/validation sets


• K-Fold Cross-Validation (CV) 

1. Split dataset into K equal parts


2. For each part, train model on remaining K-1 parts and  
compute validation loss w.r.t. part K


3. Average validation loss over all K parts


• Leave-One-Out Cross-Validation (LOOCV) 

• Special case of K-Fold CV where K is number of data points 
 

ℒCV =
1
N

N

∑
i=1

l(yi, ̂f(xi; θ*−i))

15

trained parameters 
on data without 


 pointith
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Cross-validation

• Validation loss is sensitive to which data we choose to hold back


• Can improve on this idea by taking the average validation loss 
over multiple choices of train/validation sets


• K-Fold Cross-Validation (CV) 

1. Split dataset into K equal parts


2. For each part, train model on remaining K-1 parts and  
compute validation loss w.r.t. part K


3. Average validation loss over all K parts


• Leave-One-Out Cross-Validation (LOOCV) 

• Special case of K-Fold CV where K is number of data points 
 

ℒCV =
1
N

N

∑
i=1

l(yi, ̂f(xi; θ*−i))

15

trained parameters 
on data without 


 pointith

training loss

validation loss

LOOCV loss

3rd order 
suggested
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Regularization

Regularization improves generalizability by penalizing model complexity in the loss function 

Regularized Linear Least-Squares 

• Least complex model with 


• “Complexity” increases as parameters become more nonzero


• Idea: Add sum of parameters squared to loss 
 

 


• Minimizing regularized loss leads to 
 

w = 0

ℒ(w) =
1
N

∥y − Hw∥2
2 + λwTw, λ ≥ 0

w = (XTX + NλI)−1XTy

16

least-squares 
loss

regularization
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Regularization improves generalizability by penalizing model complexity in the loss function 
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loss

regularization

Data

λ = 0
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What about noise? 

• So far, we have neglected the noise in our data


• Noise represents uncertainty or randomness in the generating 
process used to create the data


• Latent (hidden) variables


• Measurement uncertainties


• Model uncertainties (for derived data)


• From a modeling perspective, noise represents potential 
error in our model, because we are using imperfect data


• Interested in knowing the uncertainty in our model predictions


• Not a course on Uncertainty Quantification (UQ): 
instead we will try to get a flavor of the ideas involved

17

“Best” Fit

noise
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Thinking generatively

Data generation is an inherently complex process! 

• We can try to model this process by approaching the supervised learning task in a new way


• Instead of looking for model that best fits the data,


• Look for model that is most likely to generate that data


• In general, these types of models are called generative models 

How can build a model that can generate data that “looks” like ours? 

• Obviously, we accept that this isn’t the real generating process


• However, this will be a useful strategy


• Key Idea: Add randomness to our model that mimics the randomness present in the data

18
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A generative linear model

• Recall that our generalized linear model takes the form 
 




• We can modify this by incorporating a random variable  which  
represents the noise in our generative model 
 

 
 

• Note that the addition of  into our linear model makes our  
model output random as well!


• Subtle point: we are implicitly assuming that the noise is  
independent of input location (not always true)


• Left with 2 key problems: 

1. What is the probability density of the stochastic component?


2. How can we fit a random model to our data? 

̂f(x) = w ⋅ h(x)

ε

̂f(x) = w ⋅ h(x) + ε

ε

19

deterministic stochastic

“Best” Fit

noise
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Choice of probability distribution p(ε)
In general, this will depend on your data and any knowledge you may have about the generating mechanism 

• For now, let’s think of the key characteristics of our noise 

• As written, it represents a deviation from the deterministic trend


• Can be positive or negative


• Likely to be closer to the nominal than far away


• These characteristics suggest that a Gaussian (normal) distribution with zero mean is a reasonable choice  
 
p(ε) = 𝒩(0,σ2)

20
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Likelihood

• Recall that our generative linear model is random, therefore, it has a probability density 
 




• The probability density of the sum of a normally distributed random variable and a scalar shifts the mean 
 




• The value of this distribution for a given set of parameters, input, and noise variance, is often called the likelihood because it 
represents how “likely” the model will output that particular value


• We can therefore define a dataset likelihood as the likelihood that our model will generate our particular dataset as 
 

 

̂y = ̂f(x) = w ⋅ h(x) + ε, p(ε) = 𝒩(0,σ2)

p( ̂y |w, h(x), σ2) = 𝒩(w ⋅ h(x), σ2)

L = p(y |x, w, σ2) =
N

∏
i=1

p(yi |xi, w, σ2) =
N

∏
i=1

𝒩(w ⋅ h(xi), σ2)

21
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Maximum likelihood estimate

The Maximum likelihood estimate (MLE) maximizes the likelihood of generating the dataset with the model 

• Specifically, we minimize the negative log dataset likelihood (NLL) for  and  
 

 

 

 

 

w σ2

ℒ = − ln p(y |x, w, σ2) = −
N
2

ln 2π − N ln σ −
1

2σ2

N

∑
i=1

(yi − w ⋅ h(x))2

∂ℒ
∂w

= 0 ⟹ w = (HTH)−1HTy

∂ℒ
∂w

= 0 ⟹ σ2 =
1
N

N

∑
i=1

(yi − w ⋅ h(xi))2

22

identical to our  
least-squares solution!

mean squared-error



2023 EDL Summer Seminar Series

line of best fit

Effect of noise on parameter estimates

Using our generative model, we can create fake datasets and see how our model parameters would be effected.


• For linear models, can derive analytical probability density of parameters, taking noise into account (give this a try!)


• Sampling from this distribution, provides a notion of predictive model uncertainty

23

Maximum Likelihood 
Estimate

parameters are  
not independent!
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line of best fit

Effect of noise on parameter estimates

Using our generative model, we can create fake datasets and see how our model parameters would be effected.


• For linear models, can derive analytical probability density of parameters, taking noise into account (give this a try!)


• Sampling from this distribution, provides a notion of predictive model uncertainty

23

sampled 
parameters

sampled 
models

Maximum Likelihood 
Estimate

parameters are  
not independent!



2023 EDL Summer Seminar Series

Predictive variance

• Summarizing prediction and variance for linear MLE model (skipping the details) 
 

 
 
̂y = ̂f(x) = h(x)Tw = h(x)T(HTH)−1HTy

̂σ2(x) = hT(x) cov{w} h(x) = σ2 hT(x)(HTH)−1h(x)

24

data

MLE

±3 ̂σ

Linear Model. 3rd-Order Polynomial 9th-Order Polynomial
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Gaussian Processes (GPs)

25

Generalization of the Gaussian distribution for random scalars to random functions

f(x) ∼ 𝒢𝒫(μ(x), k(x, x′￼))x ∼ 𝒩(m, σ2)

m ° 3æ m m + 3æ
x

p(
x
)

x

f
(x

)

p(f |x)

µ(x), µ(x) ± 3æ
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Gaussian Processes (GPs)

25

Generalization of the Gaussian distribution for random scalars to random functions

f(x) ∼ 𝒢𝒫(μ(x), k(x, x′￼))x ∼ 𝒩(m, σ2)

m ° 3æ m m + 3æ
x

p(
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Gaussian Process Regression

26

Any finite set of index points  represents a multivariate Gaussian distribution for function values.{x1, …, xn}

⟹
f(x1)
f(x2)
f(x3)

∼ 𝒩
μ(x1)
μ(x2)
μ(x3)

,
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f(x) ∼ p( f |x) = 𝒢𝒫(μ, k)
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Uranus Aerocapture

27

Early Career Initiative (ECI) Project 

• Demonstrate aerocapture as a 
viable alternative to propulsive orbit 
insertions for Gas Giant orbiter and 
probe missions


• Benefits:


• Increased payload capacity


• Decrease cruise time

LaRC, ARC, JSC, JPL, Draper Laboratories, Booz Allen Hamilton, Intuitive Machines
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Aeroheating database generation

28
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1. Identify state-space of interest

2. Sample conditions 
with LHS

3. Compute  
aeroheating 

environments
4. Construct ML 

surrogates for QoIs
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Dataset normalization

• “Standard” normalization:  


• Good opportunity to ask “What do I know about my data?”


• Dimensionality reduction, known scaling laws or engineering correlations, limits or bounds?


• Sutton-Graves model for max convective heating:  
 




• Newtonian pressure theory: 
 




• Suggests that maximum value of QoIs for each freestream condition follow generalized Sutton-Graves relation 
 

x̃ = (x − μx)/σx

qmax
conv = K

ρ∞

Rn
V3

∞

Cmax
p =

pmax − p∞
1
2 ρ∞V2

∞

≈ 2 ⟹ pmax ≈ Aρ∞V2
∞

θmax = Cθ ρmθ
∞ Vnθ

∞

29
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Linear models to rescue

• The generalized Sutton-Graves model is linear in it’s parameters with appropriate transformation! 
 




• Normalizing all the data by our new fits reduces the dimensionality of the problem to the body coordinate

θmax = Cθ ρmθ
∞ Vnθ

∞ ⟹ ln θmax = ln Cθ + mθ ln ρ∞ + nθ ln V∞

30
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Aerofusion Early Career Initiative

31

  CFD Solutions and Wind Tunnel Tests

Aerodynamic Database Construction

FMV Mach or Velocity
α Angle of Attack
β Side-slip Angle

Re Reynolds Number
⋮

⟹

CL Lift Coef.
CD Drag Coef.

Cm Pitching Coef.
⋮
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Data fusion with uncertainties

32

Typical data is noisy, with varying degrees of fidelity to flight vehicle 

• Data continuously updated as design matures


• Different levels of fidelity in computational tools


• Wind tunnel models approximate vehicle geometry and roughness


• Wind tunnels cannot always reproduce flight conditions


Current state of the practice: “UQ by Inspection”

Nominal aerocoefficients constructed 
using expert judgment, given multiple 

sources of data.

Uncertainty buildup based on 
dispersion factors, tuned to cover 

varying data sources.
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Data fusion with uncertainties

32

Typical data is noisy, with varying degrees of fidelity to flight vehicle 

• Data continuously updated as design matures


• Different levels of fidelity in computational tools


• Wind tunnel models approximate vehicle geometry and roughness


• Wind tunnels cannot always reproduce flight conditions


Current state of the practice: “UQ by Inspection”

Nominal aerocoefficients constructed 
using expert judgment, given multiple 

sources of data.

Uncertainty buildup based on 
dispersion factors, tuned to cover 

varying data sources.

Want to “learn” a surrogate conditional 
probability distribution, given all data sources

x y = f(x)

p(y |x)

•  defines the “probability of 
outcome  given ”


• surrogate model is “stochastic” but 
not “random”

p(y |x)
y x
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Example Orion NTF data

33

• All reported results based on Orion 133-CA test campaign performed in the National Transonic Facility at NASA LaRC [1]

II.B. Crew Module Coordinate System Conventions

The CM coordinate system, angle of attack, and aerodynamic coe�cient orientation conventions are shown
in Figure 5, taken from the CEV Aerodynamic Databook.5 Note in particular that a heatshield-forward
attitude has an angle of attack of 180�.

Figure 5: Axis, Force, and Moment Definitions for Crew Module.
5

The aerodynamic moments are typically resolved about a nominal cg location defined by the Orion
Project. Through the course of the CM development, the nominal cg location has shifted, primarily providing
progressively smaller o↵sets of the cg location in the z-axis direction. The CAP team typically considers
moments resolved about three di↵erent mrc locations: apex, cg, and symmetric cg. The database is provided
with the moment about the theoretical apex for the nominal, 32.5� backshell, geometry (labeled MRC in
Figure 5). The flight cg location is used to determine flight characteristics such as trim angle of attack, and
is provided as an output of the API. The symmetric cg (a location along the x-axis corresponding to the cg
with no y- or z-axis o↵sets) is used to develop the nominal pithching-moment coe�cient so that symmetry
conditions can be enforced. Moment uncertainties are developed for either the cg or symmetric cg location.

II.C. CM Database Formulation

The CM portion of the database provides the aerodynamic forces and moments as a function of a velocity
parameter, FMV, and the orientation of the vehicle with respect to the flow. The database formulation
takes advantage of the fact that the vehicle is primarily axisymmetric and treats the nominal coe�cients as
functions of FMV and ↵T only. Tables are provided for CA, CN , and Cm, and transformations made to
compute the full set of coe�cients. The velocity parameter, FMV , is defined in Equation 1 as

FMV =

8
>><

>>:

M1 if U1  8.8 kfps

M1(9.8� U1) + U1(U1 � 8.8) if 8.8 kfps < U1 < 9.8 kfps

U1 if U1 � 9.8 kfps,

(1)

where U1 is given in units of kfps. The FMV function provides a single velocity parameter for the entire
database by taking advantage of the near numerical equivalency of Mach number and velocity (in kfps)
around Mach 10b. The blended parameter provides a smooth transition between Mach number for subsonic
and supersonic speeds and velocity for hypersonic speeds.

b Note that the formulation of FMV complicates the direct application of the Orion aerodatabase to entry simulations on
other bodies, such as Mars.
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[1] Brauckmann.  CAP WTT Report EG-CAP-12-65, NASA LaRC, 2022 (under preparation). 
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Multihierarchy Gaussian Process Regression

34

• Real world data typically cannot be organized into 
hierarchy of fidelity levels with single “truth”


• Easier to categorize “nominal” and “off-nominal” data
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Orion heatshield 
models used in 

133-CA test 
campaign in the 

National 
Transonic Facility
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Model distributions compared to data
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• Networks are trained with/without data, but regularized using physical laws


• Loss function constructed from data term and residuals of governing equations


• Boundary conditions treated like data (constrained) or enforced by construction (unconstrained) of the neural network

Conventional Discretization Approaches (CFD)
discrete mesh in  

space/time

• Space discretization leads to large system of ODEs


• Solution defined and dependent on mesh discretization


• Solution satisfies system of PDEs in a weak sense


• Rigorous theory for convergence and stability

NN[t
x]

θ

u(t, x)

continuous solution in 
space/time

Deep-Learning Approach

• PDEs converted into large optimization problem on params.


• Solution dependent on training points, defined everywhere


• Solution satisfies system of PDEs in a continuous sense


• Convergence and stability are active fields of research
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5.  Minimize the loss function with respect to network parameters
̂u = ̂u(x; θ*), argmin

θ
ℒ(θ)



2023 EDL Summer Seminar Series

Navier-Stokes equations for perfect gas
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• Interested in assessing the heating predictions obtained with 
neural networks in “simple” configurations at high speed


• Previous literature is not concerned with heating

PDEs, not based on neural networks, have also been developed in recent years (for instance [42, 43]), but we will not

consider those here. Finally, Magill et al. [44] have demonstrated that neural networks, trained on PDEs as in [36], learn

general representations of the underlying solutions.

Some recent key papers from Karniadakis group:

• [45] - Variational Physics-Informed Neural Networks For Solving Partial Di�erential Equations

• [46] - hp-VPINNs: Variational physics-informed neural networks with domain decomposition

• [47] - DeepXDE: A Deep Learning Library for Solving Di�erential Equations

• [48] - DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by

neural networks

• [49] - Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators

• [50] - DeepONet prediction of linear instability waves in high-speed boundary layers

Understanding learning problems:

• [51] - Understanding and mitigating gradient pathologies in physics-informed neural networks

• [52] - When and why PINNs fail to train: A neural tangent kernel perspective

Euler/Navier-Stokes:

• [53] - Thermodynamically consistent physics-informed neural networks for hyperbolic systems

•

• [54] - DeepM&Mnet for hypersonics

• [55] - Physics-informed neural networks for high-speed flows

II. Governing Equations

Should we present the

dimensional equations

first?
We consider the non-dimensional, compressible Navier-Stokes equations for a perfect gas in two dimensions. In

conservative form, these are written compactly as

m[
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where ⌦ 2 R2 is the computational domain of interest. The conserved variable vector, [, and inviscid and viscous flux
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where d, ?, D, E, and ⇢ are the non-dimensional gas density, pressure, G and H-velocities, and total specific energy,

respectively, and (gGG , gGH , gHG , gHH) and (@G , @H) are the components of the viscous stress tensor and heat flux vector,

respectively. The total specific enthalpy is given by � = ⇢ + ?/d. For a perfect gas, we can write the non-dimensional

pressure and total energy as
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where ) is the non-dimensional temperature, "1 is the free-stream Mach number, and W is the ratio of specific heats for

the gas. Following Stokes’ hypothesis and Fourier’s law, the viscous stresses and heat fluxes are given as
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where ˆ̀ and : are the non-dimensional scaled viscosity and thermal conductivity coe�cients, respectively, which are

given by Sutherland’s law and the definition of the Prandtl number, Pr, such that
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where Re1 is the free-stream Reynolds number, ⇠ is the second coe�cient in Sutherland’s viscosity law, and )1 is the

dimensional free-stream temperature.

A. Artificial viscosity
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def steady_navier_stokes_2d(coords, prim_vars):

    rho = prim_vars[:,0:1]

    T = prim_vars[:,1:2]

    u = prim_vars[:,2:3]

    v = prim_vars[:,3:]

    p = rho*T/(gamma*M_inf**2)

    

    mu = (s2 + T_inf) * tf.maximum(T,1.0)**1.5 / (s2 + T_inf*tf.maximum(T,1.0))

    k = mu / ((gamma-1) * M_inf**2 * Pr)


    rho_x, rho_y, T_x, T_y, u_x, u_y, v_x, v_y = gradients(prim_vars, coords)

    p_x, p_y = [dde.grad.jacobian(p, coords, j=j) for j in range(2)]


    tauxx = mu * ((4.0/3.0)*u_x - (2.0/3.0)*v_y)

    tauyy = mu * ((4.0/3.0)*v_y - (2.0/3.0)*u_x)

    tauxy = mu * (u_y + v_x)


    qx = -k * T_x

    qy = -k * T_y

    

    tauxx_x = dde.grad.jacobian(tauxx, coords, j=0)

    tauxy_x, tauxy_y = [dde.grad.jacobian(tauxy, coords, j=j) for j in range(2)]

    tauyy_y = dde.grad.jacobian(tauyy, coords, j=1)

    

    qx_x = dde.grad.jacobian(qx, coords, j=0)

    qy_y = dde.grad.jacobian(qy, coords, j=1)

    

    mass   = rho*(u_x + v_y) + u*rho_x + v*rho_y

    x_mtm  = rho*(u*u_x + v*u_y) + p_x - (tauxx_x + tauxy_y)/Re_inf

    y_mtm  = rho*(u*v_x + v*v_y) + p_y - (tauxy_x + tauyy_y)/Re_inf

    energy = (

        rho*(u*u*u_x + u*v*(v_x+u_y) + v*v*v_y) + gamma/(gamma-1.0)*(

            u*p_x + v*p_y - T*(u*rho_x + v*rho_y)/(gamma*M_inf**2)

        ) - (

            u*tauxx_x + tauxx*u_x + v*tauxy_x + tauxy*v_x +

            u*tauxy_y + tauxy*u_y + v*tauyy_y + tauyy*v_y -

            qx_x - qy_y 

        ) / Re_inf

    )


    return [mass, x_mtm, y_mtm, energy]

Governing equations.

Loss function in Python code.
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Comparison with LAURA for flat plate

40

• Freestream conditions


• Network architecture and training


• Dense feed-forward network, 6 hidden layers with 32 nodes


• Layer-wise adaptive activation function


• 50,000 Adam iterations with learning rate of 0.001


• Further converged with L-BFGS algorithm


• LAURA results


• 81x227 node grid


• Mesh adaptation to resolve shock
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°0.00124

0.01782

0.03689
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0.07503

Table 1 Flow conditions and gas parameters used for all test cases presented in this paper.

"1 Re1 )1 [K] )wall [K] W ⇠ [K] Pr

3.0 5.0⇥104 300.0 300.0 1.4 110.33 0.72

Fig. 1 Best loss obtained after 10 runs for each case/network configuration versus the ratio of the number of

collocation points used in training to the number of trainable network parameters.

known as the gradient flow problem. In this sense, the learning rate _ is analogous to the time-step in the Euler

integration scheme. Some key points to make:

• Training time is linearly

proportional to number

of points

• Number of points is not

dependent on

dimension (no curse of

dimensionality)

• Training points are

independent of solution

data (network

parameter values)

• Solution is algebraic

and continuously

di�erentiable,

important for heating

and shear stress

predictions

IV. Results

8
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Comparison with LAURA for flat plate
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• Boundary and shock layers well resolved with PINN


• Heat flux computed along the entire wall (continuous 
function) by taking gradient of temperature solution network


• Does not require gradient approximation/interpolation as 
with CFD solution
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Where can I find additional resources?

• Books I recommend 

• I. Goodfellow, Y. Bengio, A. Courville. Deep Learning.  MIT Press, 2016. (www.deeplearningbook.org)


• C.E. Rasmussen, C.K.I. Williams.  Gaussian Processes for Machine Learning.  MIT Press, 2006.  (gaussianprocess.org/gpml)


• S. Rogers, M. Girolami.  A First Course in Machine Learning, 2nd Ed. CRC Press, 2017.


• D.S. Sivia.  Data Analysis: A Bayesian Tutorial.  Oxford University Press, 2006.


• R.B. Gramacy.  Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences.  CRC Press, 2020.  
(bobby.gramacy.com/surrogates)


• Free online courses 

• Stanford CS230: Deep Learning.  Video lectures available at cs230.stanford.edu/lecture.


• MIT 6.036: Introduction to Machine Learning. Course notes and lectures at  
openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019.


• Python packages: scikit-learn, Pytorch, Tensorflow, JAX, GPy, …

42

http://www.deeplearningbook.org
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http://bobby.gramacy.com/surrogates
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http://openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019

