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YN Goals of this seminar

1. Provide a foundation in ML and resources for you to learn on your own
- Machine learning is a very broad field, impossible to teach everything here
 Instead, introduce core principles and vocabulary

* Resources for self-learning

2. Demonstrate recent examples of ML in my daily work at NASA
* How to approach typical problems
- Combine physical intuition and knowledge with ML principles

» (Gaussian Process regression

“Machine Learning is easy, but also Machine Learning is hard.”
- Levi Walker
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What do we mean by “learning”?

A formal definition: A computer program is said to learn from experience E with respect to some class of tasks 7 and
performance measure P, if its performance at tasks in 1, as measured by P, improves with experience [1].

1. Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
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Peng, Jury, Donnes, Ciurtin. Frontiers in Pharmacology 12:720694, 2021.

2023 EDL Summer Seminar Series

Reinforcement
Learning

N

Model take actions in the environment then
received state updates and feedbacks
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Y Regression in a nutshell

Learn a functional relationship (model) between data inputs and outputs to make predictions for unseen inputs

Supervised Learning Framework Output

 Given adataset: I = {(x,y;) : x; € Q, y. = f(x,) }

« Given a (possibly parametric) model: y = f(x; 0)

* Find a model that best approximates the underlying
relationship between inputs and outputs

£, %) = f(x)

Input
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Regression in a nutshell

Learn a functional relationship (model) between data inputs and outputs to make predictions for unseen inputs

Supervised Learning Framework Output

 Given adataset: I = {(x,y;) : x; € Q, y. = f(x,) }

« Given a (possibly parametric) model: y = f(x; 0)

* Find a model that best approximates the underlying
relationship between inputs and outputs

£, %) = f(x)

Key Questions

1. How do we know if a model is “good” (much less “best”)?

2. What about noisy data? Input
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Many models out there!

Examples:

* Linear Models

« Support Vector Machines
« (Gaussian Processes

* Neural Networks

 Decision Trees

Type of Learning

Supervised
Learning

Develop predictive

Machine
Learning

model based on both
input and output data

Unsupervised

Categories of Algorithms

Learning

Discover an internal
representation from
input data only
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Many models out there!

Type of Learning Categories of Algorithms
Examples: ‘ su
. e - pport Discriminant : Nearest
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Linear regression

Given the data on the right, what are our initial thoughts?

Model assumption: response is linear with nonzero intercept

Observations generally increase with increasing input values

Trend appears linear with a positive slope and negative intercept

The trend is not perfect, noise or other unknown feature

y — f(.x, Wo, Wl) — WO —+ Wlx

Observations
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N Linear regression

Given the data on the right, what are our initial thoughts?

 Qbservations generally increase with increasing input values

* T[rend appears linear with a positive slope and negative intercept

 The trend is not perfect, noise or other unknown feature

Model assumption: response is linear with nonzero intercept

y — f(.x, Wo, Wl) — WO —+ Wlx

Observations

How do we find the “best” model?
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Loss functions

Loss functions are a measure of our model performance on supervised learning tasks

 General rule is to make them positive and invariant to dataset size

 Decreasing loss means better model performance

For continuous input spaces, most loss functions take the following form:

ZO)f] = E,l(fx).f(x:0) = J I(f(x), f(x; 0)) p(x) dx

Q

Loss as function Expected model error over
of model parameters 0 the input probability distribution

for given modelf(x; 0) p(x) for given error model /

Definition of the expectation
of [ on p(x)
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N Loss functions

Loss functions are a measure of our model performance on supervised learning tasks

 General rule is to make them positive and invariant to dataset size

 Decreasing loss means better model performance

For continuous input spaces, most loss functions take the following form:

ZO)f] = E,l(fx).f(x:0) = J I(f(x), f(x; 0)) p(x) dx

@)
Loss as function Expected model error over . .
. . L. Definition of the expectation
of model parameters 6 the input probability distribution
. A . of [ on p(x)
for given model f(x; 6) p(x) for given error model /

We generally don’t know the distribution of the input space p(x)
or the true function f(x) that we want to model!
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Y Loss functions

Loss functions are a measure of our model performance on supervised learning tasks

 General rule is to make them positive and invariant to dataset size

 Decreasing loss means better model performance

For continuous input spaces, most loss functions take the following form:

" n n 1 n
L O] = Eyl(f(x), flx;0)) = J (). e, 00) px) dx ~ — D 103 f 5z 0)

2 (G Y)ED
Loss as function Expected model error over _— . o
of model parameters ¢ the input probability distribution Definition of the expectation Empirical” loss, evaluated on
. h . of [ on p(x) available dataset
for given model f(x; 6) p(x) for given error model /

rely on
approximate
loss

We generally don’t know the distribution of the input space p(x)
or the true function f(x) that we want to model!
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Example loss functions

" 1 "
Recall ZO)f] = — D1 flx; 0)

(xiayi)eg
Model outputs are predicted values. Model outputs are predicted probabilities.
4 - |
Mean Squared Error (MSE) Cross-Entropy '.'
(y,9) = (-9 4 I(y,y) = = lylny+ (1 = yinl =y)] ;
3 :
/
3 -
2 . Mean Absolute Error (MAE) 2
e I(y,9) =y =] <2
1 1 [ -
0 A 0-
—2 —1 0 1 2 0.0 0.2 0.4 0.6 0.8 1.0
y—y y
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YN Example loss functions

Recall 3(6)[f] =

% Z l()}ia]?(xi;‘g))

(-xiayi)e9

Model outputs are predicted values.

Mean Squared Error (MSE)
I(y,9) = (y =)

Mean Absolute Error (MAE)
[(y,y) =1y -]

Model outputs are predicted probabilities.

Cross-Entropy ,."
[(v,9) = = [yln§ + (1 = p)In(l = )] |

0.2 0.4 0.6 0.8

Choice depends on type of data and model.
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N Linear least squares regression

A

Revisiting our linear model, the MSE loss is given as

1 N
c9(\/\/0, Wl) — N lzzl [yl — (WO + Wl.xi)]z

Best model is one that minimizes the loss, can derive

this analytically for linear least squares loss

0L _ _
_:():\,wozy—wlx
GWO

07 Xy — X
7 o BT
Owl x2 — x2

Observations
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Linear least squares regression

* Reuvisiting our linear model, the MSE loss is given as

How do we find the “best” model?

1N
L (Wy, W) = ~ 2 [y, — (Wy + wx,)]?

i=1 A
2.0 -
« Best model is one that minimizes the loss, can derive
this analytically for linear least squares loss |5 -
0L S
— =0 = Wy =) — WX Z 1.0-
OWO D
ol :
L L O _ “Best” Fit
07 Xy — XY 0.5
a— — O — Wl — = —
Wi AT 0.0-
0.5 L — , . . .
0.0 0.5 1.0 1.5 2.0

Inputs
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Learning nonlinear responses with linear model

* In general, linear model only needs to be linear in the parameters

A\

f(x) = wohy(x) + wih(x) + wrh,(x) + ...
Output

 We can write this compactly as

f(x) =w-h(x), w=[wyw;,w,, 21N h(x) = [hy(x), hy(X), hy(x), i

Prediction

 This leads to a least-squares loss

1
Z(w) =—lly - Hw|3, y=Dp-.-ynl’s H=[h(xp), ..., h(xy)]

* Minimizing the loss leads to model of best fit

Input

w = (H'H)"'Hy
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YN Polynomial regression

* Polynomial regression is a linear problem!
(think in terms of the weights)

fw) =w-h®), hx)=x*

 Using a least-squares loss function, we obtain

w = (HTH)H y

Observations
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Polynomial regression

* Polynomial regression is a linear problem!
(think in terms of the weights)

fw) =w-h(), h(x)=x

* Using a least-squares loss function, we obtain 10 -

w = (HTH)H y

* Model assumption: response follows a third-order polynomial 3rd-order

polynomial \

Observations
o)

4 -
2 -
0 - *°
—2 0 2 4 6 8 10
Inputs

2023 EDL Summer Seminar Series 12



Polynomial regression

Polynomial regression is a linear problem!
(think in terms of the weights)

fow)=w-h(x), Ix)=x*
Using a least-squares loss function, we obtain

w = (HTH)H y

Model assumption: response follows a third-order polynomial

Observations

Looks great! But if a 3rd-order is good, why not 12th-order?
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Polynomial regression

* Polynomial regression is a linear problem!
(think in terms of the weights)

fw) =w-hx), R = x* . :
* Using a least-squares loss function, we obtain 10 -
— (arT T
W = (H H)H y 2 12th-order
.S polynomial
g
* Model assumption: response follows a third-order polynomial 2 6 3rd-order
8 . polynomial \
 Looks great! But if a 3rd-order is good, why not 12th-order?
2 -
0 - ¢’
—2 0 2 4 6 8 10
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YN Generalization and overfitting

L east-squares loss favors model complexity over predictability!

2
75 10 5
Order 7
20 - Order 3 o
1
Z 15 . Order 5 Order 5 10 5
9 "
g 10 - Data , . —
S \ :
Order 0 o/ 10 B decreasing loss with
5 - / ] Increasing polynomial order
S \
0- . -
der 1
r er | | | lO—l ! ) | | | ! !
0 S 10 0 2 4 6 8 10 12
Inputs Polynomial Order
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Y Generalization and overfitting

Observations

L east-squares loss favors model complexity over predictability!

25 - 10
) poor predictability outside > .
< data set for complex models
Order 7
20 1 Order 3
10!
15 - Order s Order 2 :
I
: S
10 - Data , -
A Order 0 / 10Y .
S - . \ :
N~
" Order 1
! ! ! 10— l
0 S 10
Inputs

decreasing loss with
Increasing polynomial order
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YN Generalization and overfitting

L east-squares loss favors model complexity over predictability!

25 - 10° -
) - poor predictability outside . i We want to optimize the model complexity
data set for complex models o to generalize well to new data
20 - Order 3 without overfitting our current data.
10"
= 15 - orders Order 2 :
QT
—
2 10 - Data , -
O .,
O 0
A Order 0 o/ 107 - decreasing loss with
5 - \ Increasing polynomial order
N~
’ Order 1
! ! ! 10— l ! ) | ! | ) |
0 S 10 0 2 4 6 8 10 12
Inputs Polynomial Order
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AD)

Observations

12 - “a
= " 4
- - u 10
10 -
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103 -
81 ° :
6 - _8] 102
training data .
4 - . * 101 .
2 7 ® *
. 0 ° 10"
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Inputs
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Cross-validation

e Validation loss is sensitive to which data we choose to hold back

 (Can improve on this idea by taking the average validation loss
over multiple choices of train/validation sets

« K-Fold Cross-Validation (CV)
1. Split dataset into K equal parts

2. For each part, train model on remaining K-1 parts and
compute validation loss w.r.t. part K

3. Average validation loss over all K parts
 Leave-One-Out Cross-Validation (LOOCYV)

* Special case of K-Fold CV where K is number of data points

N
| n trai
cvV . rained parameters
g — N Z l()’i, f(xi, 9_*1)) on data without
=1

\\/ i™ point
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Y Cross-validation

e Validation loss is sensitive to which data we choose to hold back

 (Can improve on this idea by taking the average validation loss

over multiple choices of train/validation sets _
10% -
« K-Fold Cross-Validation (CV) i !
3rd order
' ted
1. Split dataset into K equal parts 10° - SHIIEE
: validation loss
2. For each part, train model on remaining K-1 parts and .
compute validation loss w.r.t. part K _‘_]8 107 5
3. Average validation loss over all K parts 10! L OOCY loss
 Leave-One-Out Cross-Validation (LOOCYV) ‘
: : . 10° E training loss
» Special case of K-Fold CV where K is number of data points ; —o—o—
1 & A rained parameters 0 1 2 3 4 5 6 7 8 9 10 11 12
LV = N Z [ (yiaf (x,'§ 9_*1)) on data without Polynomial Order
i=1

\\/ i™ point
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YN Regularization

Reqularization improves generalizability by penalizing model complexity in the loss function

Regularized Linear Least-Squares
 Least complex model with w = ()

* “Complexity” increases as parameters become more nonzero

* |ldea: Add sum of parameters squared to loss

1
L(W) = NHy — Hw||+ iw'w, 1>0

least-squares regularization
loss

* Minimizing regularized loss leads to

w=(X'X + N X'y
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N Regularization

Reqularization improves generalizability by penalizing model complexity in the loss function

Regularized Linear Least-Squares

. 3.0 -
 Least complex model with w = () 5
ata
L
* “Complexity” increases as parameters become more nonzero 2.5
* Ildea: Add sum of parameters squared to loss Z 2.0 - ®
o
1 g g5
Z(w)=—|ly —Hw|5+Aw'w, 4>0 I o
N &
C1.0-
least-squares regularization
loss o
L . 0.5
* Minimizing regularized loss leads to
L
w = (X"X + N XTy 001 ¢ . . - . .
0.0 0.2 0.4 0.6 0.8 1.0

Inputs
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N Regularization

Reqularization improves generalizability by penalizing model complexity in the loss function

Regularized Linear Least-Squares

» Least complex model with w = () sth-order polynomial

* “Complexity” increases as parameters become more nonzero

* |ldea: Add sum of parameters squared to loss

1
L(W) = NHy — Hw||+ iw'w, 1>0

Observations

least-squares regularization
loss

* Minimizing regularized loss leads to

w=(X'X + N X'y

Inputs
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What about noise?

* So far, we have neglected the noise in our data

* Noise represents uncertainty or randomness in the generating
process used to create the data

* [atent (hidden) variables 2.0+
* Measurement uncertainties [ 5 -
=
* Model uncertainties (for derived data) =
S 1.0-
* From a modeling perspective, noise represents potential g |
error in our model, because we are using imperfect data O 05 Sest” it
* Interested in knowing the uncertainty in our model predictions 0.0-
* Not a course on Uncertainty Quantification (UQ): :
instead we will try to get a flavor of the ideas involved —0.5 o0 N T s >0

Inputs
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Thinking generatively

Data generation is an inherently complex process!
* We can try to model this process by approaching the supervised learning task in a new way
* Instead of looking for model that best fits the data,

 Look for model that is most likely to generate that data

* In general, these types of models are called generative models

How can build a model that can generate data that “looks” like ours?
* Obviously, we accept that this isn’t the real generating process

 However, this will be a useful strategy

« Key ldea: Add randomness to our model that mimics the randomness present in the data
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A generative linear model

Recall that our generalized linear model takes the form

f(x) = w - h(x)

We can modify this by incorporating a random variable € which
represents the noise in our generative model

f"(x) =w-h(Xx) +¢

deterministic  stochastic

Note that the addition of € into our linear model makes our
model output random as well!

Subtle point: we are implicitly assuming that the noise is
independent of input location (not always true)

Left with 2 key problems:
1. What is the probability density of the stochastic component?

2. How can we fit a random model to our data?

Observations

“Best” Fit

Inputs
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Choice of probability distribution p(¢)

In general, this will depend on your data and any knowledge you may have about the generating mechanism
 For now, let’s think of the key characteristics of our noise

 As written, it represents a deviation from the deterministic trend

* (Can be positive or negative

* Likely to be closer to the nominal than far away

 These characteristics suggest that a Gaussian (normal) distribution with zero mean is a reasonable choice

p(e) = #(0,6%)
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Likelihood

* Recall that our generative linear model is random, therefore, it has a probability density
Yy=fx)=w-hx) +e, pe)=40,06%

* The probability density of the sum of a normally distributed random variable and a scalar shifts the mean
p(|w,h(x),6%) = N (W - h(x), 6%

* The value of this distribution for a given set of parameters, input, and noise variance, is often called the /ikelihood because it
represents how “likely” the model will output that particular value

* We can therefore define a dataset likelihood as the likelihood that our model will generate our particular dataset as

N N
L=pylx,w,0?) = | |pGilxw.6?) = [ [ 4w hx). 6%
i=1 =1
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N Maximum likelihood estimate

The Maximum likelihood estimate (MLE) maximizes the likelihood of generating the dataset with the model

o Specifically, we minimize the negative log dataset likelihood (NLL) for w and o’

N I <
< =—-Inp(y|x,w,0?) =——In2x—Nlno Z(yi—w-h(x))z
202

2 =1
0L -
— =) = w= (HTH)—lHTy 4 identical to our
OW least-squares solution!
0L ]
— =90 — 62 — .—w - h(x. 2 < mean squared-error
— ~ 2.0 (x))
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YN Effect of noise on parameter estimates

Using our generative model, we can create fake datasets and see how our model parameters would be effected.
* For linear models, can derive analytical probability density of parameters, taking noise into account (give this a try!)

 Sampling from this distribution, provides a notion of predictive model uncertainty

1.45 -
parameters are
[ 40 - not independent! 20 -
1 35 - Maximum Likelihood [ 5-
Estimate ” "~
1.30 S
E g 1.0-
1.25 0
O
1.20 © 05
1.15
0.0 -
1.10 -
T T T | _0.5 ! ! I T T
—0.5 —0.4 —0.3 —0.2 0.0 0.5 1.0 1.5 2.0
W Inputs
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YN Effect of noise on parameter estimates

Using our generative model, we can create fake datasets and see how our model parameters would be effected.

* For linear models, can derive analytical probability density of parameters, taking noise into account (give this a try!)

 Sampling from this distribution, provides a notion of predictive model uncertainty

1.45 -

parameters are
1 .40 - not independent!
1.35 - Maxmum Likelihood

Estimate
1.30
= 1.25 \
1.20 \
sampled
LIS parameters
1.10 -
—0.5 —0.4 —0.3 02

L)

Observations
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Y Predictive variance

« Summarizing prediction and variance for linear MLE model (skipping the details)
$ = f(x) = h(x)"w = h(x)"(HH)"'H"y

6°(x) = h!(x) cov{w)} h(x) = ¢ h!(x)(H'H) 'Th(x)

Linear Model. 3rd-Order Polynomial 9th-Order Polynomial
15.0 15.0 15.0
12.5 1 12.5 1 12.5 1
10.0 1 10.0 - 10.0 -
§ 7.5 1 § 7.5 1 g 7.5 1
) 3, )
2 5.01 2 5.0 2 5.01
O O o
2.5 1 2.5 1 2.5 1
0.0 - 0.0 - o 0.0 -
—2 0 2 4 6 8 10 —2 0 2 4 6 3 10 —2 0 2 4 6 3 10
Inputs Inputs Inputs
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‘Gaussian Processes (GPs)

Generalization of the Gaussian distribution for random scalars to random functions

X /V(m, 0'2) f(X) ~ ?@(ﬂ(x), k(-xa -x,))

p(flxz)
—=== u(z), pu(x) £ 30 PREN

B —~
= =
S—

S
s
S
S
_I_
oy
S

2 F mmmmm L)
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‘Gaussian Processes (GPs)

Generalization of the Gaussian distribution for random scalars to random functions

X /V(m, 0'2) f(X) ~ ?@(//{(x)a k(-xa )C,))

p(f|z)
—=== u(z), pu(x) £ 30 PREN

Point Samples

S
_|_
u
S
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Gaussian Process Regression

Any finite set of index points {xy, ..., X, } represents a multivariate Gaussian distribution for function values.

prior

J&x) ~ p(flx) = £P(u, k)

fx) ue) | kG, x) kG, kG, xs)
= |fO) | ~ | [uC) |, | k(o xp)  k(x, x5)  k(xy, X3) 1.0 -
_f(xg)_ _//t(x3)_ _k(x3, xp) k(s xy)  k(xs, x3)_

2.0

True Function

== === Prediction Mean + 95% CI

1.5 -

0.9 7

—1.0 -

—1.95 -

_2.0 I I
0.0 0.9 1.0 1.5
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Gaussian Process Regression

Any finite set of index points {xy, ..., X, } represents a multivariate Gaussian distribution for function values.

prior

2.0
f(X) ~ p(flx) — ‘593(/,;, k) True Function
) ) ) o ) 15 - == === Prediction Mean + 95% CI
Jxp) p(xy) k(xp, x1)  k(xp,x5)  k(xp, x3) '
= [JO) | ~ | | O [, | k(g x1) k(x, Xp) k(X X3) 1.0 -
_f(xg)_ _//t(x3)_ _k(x39 xp)  k(xz,xy)  k(xs, xg)_
0.5 1
Regression performed by conditioning the distribution on data & = (X, y) § 0.0 o o e A\ o o o e
posterior —0.9 -
fG) ~ p(f12.x) = €L, by .
Ax) = px) + kO, X) kX, X) ™ (v — u(X)) 15 -
f(x, x7) = ke, x) + k(x, X) kX, X)~! k(X, x') —2.0 " o o s
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Gaussian Process Regression

Any finite set of index points {xy, ..., X, } represents a multivariate Gaussian distribution for function values.

prior 5.0
f(X) ~ p(flx) — ‘593(/,;, k) . True Function
i i i o ) 15 - == == Prediction Mean + 95% CI
Jxp) x| kG, x)  k(xp,x,)  k(xg, x3) ‘ ® Data
= [J) | ~ | | |, [ KO, X)) k(xp, x5)  k(xp, X3) 1.0 -
_f(xg)_ _//t(x3)_ _k(x39 xp)  k(xz,x5)  k(xs, xg)_
0.9 -
Regression performed by conditioning the distribution on data & = (X, y) g 0.0
posterior —0.9 -
fG) ~ p(f12,x) = €. k) .
Ax) = px) + kO, X) kX, X) ™ (v — u(X)) 15 -
k(x, x) = k(x, x) + k(x, X) kX, X) ™' k(X x') —2.0 " o o e
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Any finite set of index points {xy, ..., X, } represents a multivariate Gaussian distribution for function values.

prior 5.0
f(X) ~ p(flx) — ‘595(/4, k) . True Function
i i i o ) 15 - == == Prediction Mean 4+ 95% CI
Jxp) x| kG, x)  k(xp,x,)  k(xg, x3) ‘ ® Data
= [J) | ~ | | |, [ KO, X)) k(xp, x5)  k(xp, X3) 1.0 -
_f(xg)_ _//t(x3)_ _k(x39 xp)  k(xz,x5)  k(xs, xg)_
0.9 -
Regression performed by conditioning the distribution on data & = (X, y) g 0.0
posterior —0.9 -
fG) ~ p(f12,x) = €. k) .
Ax) = p(x) + kO, X) kX, X)) (v — u(X)) 15 -
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Early Career Initiative (ECI) Project

* Demonstrate aerocapture as a
viable alternative to propulsive orbit
insertions for Gas Giant orbiter and
probe missions

. ~

Scignce Orbit

Atmospheric Exit

e Benefits:

' \

v Energy Dlssmatlon

l

* |ncreased payload capacity

]

* Decrease cruise time e 4+ R/

/ Apoapsis
Atmospherlc Entry Correction

Interface

Transfer Url;it

Interplanetary Arrival : Jettison Cruise Stage

LaRC, ARC, JSC, JPL, Draper Laboratories, Booz Allen Hamilton, Intuitive Machines
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2. Sample conditions
with LHS

3. Compute
aeroheating
environments

Freestream Density, kg/m>

20 21 22 23 24
Atmosphere-Relative Velocity, km/s

4. Construct ML
surrogates for Qols
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Dataset normalization

e “Standard” normalization: X = (x — ,Mx)/ O,

 Good opportunity to ask “What do | know about my data?”
 Dimensionality reduction, known scaling laws or engineering correlations, limits or bounds?

* Sutton-Graves model for max convective heating:

max P 0O
eony = K R_Vgo

n

* Newtonian pressure theory:

ngax _ Pmax — P ~2 = Do R Apongo

1 2

* Suggests that maximum value of Qols for each freestream condition follow generalized Sutton-Graves relation
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Linear models to rescue

The generalized Sutton-Graves model is linear in it’s parameters with appropriate transformation!

0,..=CiploVe = Inf, =InCy+mylnp, +nyInV_

Normalizing all the data by our new fits reduces the dimensionality of the problem to the body coordinate

1.0 1

= & o
~ @) oo

Normalized Quantity, 0

S
b

0.0 1

600
l_k pressure A
() . """".::::=:::. ) 500-
| £ 400
=
\ convective heat flux r ]
t,, >/
...... !|||| =
RERsasssssss s sl = 300 +
S
y .
. o)
° 3 200 -
4 >
shear stress 4
oooooooooo iii;ii"ﬁl|:'..o°.
l===iii::::==:===lllllll|"' 100 -
CFD Data
GPR Mean & 99% C.1.
1 1 1 1 1 1 O
0.0 0.2 0.4 0.6 0.8 1.0

Normalized Surface Distance, s/R
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Regression Plot
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CFD Heat Fluxes, W/m?2
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Data fusion with uncertainties

Typical data is noisy, with varying degrees of fidelity to flight vehicle

* Data continuously updated as design matures

* Different levels of fidelity in computational tools

* Wind tunnel models approximate vehicle geometry and roughness

* Wind tunnels cannot always reproduce flight conditions

Current state of the practice: “UQ by Inspection”

O

=)

|._
o QE-CA, M.C 30

0.9- = IDAT CFD, M=0.£C
-— Combined M.0 50

0.8-~=Fira nominal, M=0.£0
0.7

0.6

0.5;
oo g0, :
QA1 : w J

“.3‘ w’ |
0.3 h o o

‘W”
120 150 180

02 60 90
Angle of Attack, deg

J 30

0.06

0.04

0.02

90 120 180 180

30 60
Angle of Attack, deg

Nominal aerocoefficients constructed
using expert judgment, given multiple
sources of data.

Uncertainty buildup based on

dispersion factors, tuned to cover

varying data sources.
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Typical data is noisy, with varying degrees of fidelity to flight vehicle
Data continuously updated as design matures

Different levels of fidelity in computational tools

Wind tunnel models approximate vehicle geometry and roughness
Wind tunnels cannot always reproduce flight conditions

Current state of the practice: “UQ by Inspection”

' -
o 0E-CA, M-C 30D

0.9- = IDAT CFD, M=0.E0
-— Comhkined M.050
0.8~ Fira nominal, M=0.50

0.7~

2L A
0.2, 30

QO 0.08
-

60
Angle of

60 90
Angle of Attack, d Attack, deg

Nominal aerocoefficients constructed
using expert judgment, given multiple
sources of data.

Uncertainty buildup based on
dispersion factors, tuned to cover
varying data sources.
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Want to “learn” a surrogate conditional
robability distribution, given all data sources

» p(y|x) defines the “probability of
outcome y given x”

* surrogate model is “stochastic” but
not “random”

32



'Example Orion NTF data

* All reported results based on Orion 133-CA test campaign performed in the National Transonic Facility at NASA LaRC [1]

“Flight” Data

700D Fenced + 240 Grit

Test

Train

Roughness
Effects

IDAT 240 Grit

‘Asym metry}

-

Effects

700D Smooth

Lift

/)
<
=
3

Normalized Coefficient

1.0

'y
2 +}{ .l
ol S -
_ / < oo Ih
Rolling 8
Normal Moment ,.d/= ta:n'1 %,foru >0,w>0 @) ‘
_ .. 1| __sing 8. ao W — 0.0 1 #
¢p=tan cosBsinaf ’/‘ 4 o 189 +tan u,f 0 GN)
T Wy, =360 +tan ' = *
- ” ; u w<0 ..
oy = —05- ff
9 y ' /ir Total Velocity: *+*++
2 Vair = V(U2 + V2 + w?) —1.0 7
X-axis & _ T T T
O s 160 180 200
Pitchi
Pitching Angle of Attack, deg

Orion “IDAT” Geometry with coordinates, forces, and moments.

[1] Brauckmann. CAP WTT Report EG-CAP-12-65, NASA LaRC, 2022 (under preparation).
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Normalized Coefficier

Normalized Coefficie

Drag

etrized “Raw” Datasets

Binned Datasets used for Training

............
.::...’.’.’......

! ||||||H||n|nﬁ;

160 180 200
Angle of Attack, deg

Normalized Coefficient

Normalized Coeflicient

Pitching Moment

IDAT Smooth
IDAT Rough
700D Smooth
700D Rough

4 IDAT Smooth
4 IDAT Rough
o 700D Smooth
<4 700D Rough

160 180 200
Angle of Attack, deg

Slices of data around Mach 0.3 and Reynolds 7.5x106.
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W Multihierarchy Gaussian Process Regression

 Real world data typically cannot be organized into
hierarchy of fidelity levels with single “truth”

* Easier to categorize “nominal” and “off-nominal” data

Asymmetric, Smooth Data

+ second effect

(X29 )’2)

Orion heatshield Symmetric, Rough
models used in e

133-CA test
campaign in the + first effect
National |
Transonic Facility '\ | (X1, y1)

nominal

2023 EDL Summer Seminar Series 34



A

 Real world data typically cannot be organized into

hierarchy of fidelity levels with single “truth” Predictive Distribution

f(x) = fo(x) + wiAf; (%) + wyAfr(x)

* Easier to categorize “nominal” and “off-nominal” data

Asymmetric, Smooth Data

+ second effect

(X29 y2)

models used in

133-CA test
campaign in the + first effect
National ;
Transonic Facility '\ | (X1, y1)

nominal
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 Real world data typically cannot be organized into

hierarchy of fidelity levels with single “truth” Predictive Distribution

f(x) = fo(x) + wiAf; (%) + wyAfr(x)

* Easier to categorize “nominal” and “off-nominal” data

Asymmetric, Smooth Data

+ second effect

(X29 y2)

models used in

133-CA test
campaign in the + first effect
National 1
Transonic Facility '\ | (X1, y1)

nominal
— & —
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 Real world data typically cannot be organized into

hierarchy of fidelity levels with single “truth” Predictive Distribution

f(x) = fo(x) + wiAf; (%) + wyAfr(x)

* Easier to categorize “nominal” and “off-nominal” data

@

Asymmetric, Smooth Data

+ second effect

(X29 y2)

Orion heatshield Symmetric, Rough
models used in e

X P

133-CA test
campaign in the + first effect
National 4_ —
Transonic Facility '\ | (X1, y1)

multifidelity hierarchy
X P1 for each correction model

nominal
A —_—
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 Real world data typically cannot be organized into

hierarchy of fidelity levels with single “truth” Predictive Distribution

f(x) = fo(x) + wiAf; (%) + wyAfr(x)

* Easier to categorize “nominal” and “off-nominal” data
X Wq X W»
Asymmetric, Smooth Data : Afz(x) correction functions
X —_

account for change in
nominal

?

X P

+ second effect

(X29 y2)

@

Orion heatshield Symmetric, Rough
models used in -

Af;(x)

X —1

133-CA test 4
campaign in the + first effect
National 4. —
Transonic Facility '\ | (X1, y1)

multifidelity hierarchy
for each correction model

nominal
A —_—
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 Real world data typically cannot be organized into
hierarchy of fidelity levels with single “truth”

. .. : . : no assumed truth!
Predictive Distribution weight parameters

f(x) = fo(x) + wAf;(x) + WzAfz(x) learned from flight data
: o T ” C e or estimated from
* Easier to categorize "nominal” and “off-nominal” data orevious vehicles

correction functions
account for change in
nominal

Asymmetric, Smooth Data

+ second effect

—>
(Xz, yZ)

models used in

133-CA test
campaign in the + first effect
National |
Transonic Facility '\ (X1, y1)
Symmetric, Smooth multifidelity hierarchy
for each correction model
nominal

—
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Model distributions compared to data

1 — - -
e®00ge®®’%e
CatN IV T
%O ’ NOMINAL
O o8 $o -
5 @ ® . . ®
2 + ROUGHNESS
+ ASYMMETRY
“FLIGHT”
1 A _ i
| M., = 0.8

Pitching Moment

160 180 200 160 180 200 160 180 200
Angle of Attack, deg Angle of Attack, deg Angle of Attack, deg

Normalized aerodynamic coefficient function distributions at 3 Mach numbers and Reynolds 7.5x106.
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excellent agreement
with “noisy” data

CatN IV T
o8 e

W

Drag

Pitching Moment

160 180
Angle of Attack, deg

Angle of Attack, deg

NOMINAL
+ ROUGHNESS
+ ASYMMETRY
“FLIGHT”

My, = 0.8

160 180 200
Angle of Attack, deg

Normalized aerodynamic coefficient function distributions at 3 Mach numbers and Reynolds 7.5x106.
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compared to data

simulated “flight" data are

reasonably reproduced, %

only correction weights

PP AR L

= NOMINAL
< -
- + ROUGHNESS
+ ASYMMETRY
“FLIGHT”
1 I I I 1 I I I
excellent agreement I
with “noisy” data M = 0.8

Pitching Moment

160 180 200 160 180 200 160 180 200
Angle of Attack, deg Angle of Attack, deg Angle of Attack, deg

Normalized aerodynamic coefficient function distributions at 3 Mach numbers and Reynolds 7.5x106.
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compared to data

simulated “flight" data are
reasonably reproduced,
only correction weights

excellent agreement
with “noisy” data

N s

Pitching Moment

PP AR L

NOMINAL
+ ROUGHNESS
+ ASYMMETRY
“FLIGHT”

My, = 0.8

160 180 200 160 180 200 160 180 200
Angle of Attack, deg Angle of Attack, deg Angle of Attack, deg

Normalized aerodynamic coefficient function distributions at 3 Mach numbers and Reynolds 7.5x106.
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“out-of-distribution”
uncertainty in regions
of no data
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Physics Informed Neural Networks

 Networks are trained with/without data, but regularized using physical laws
* Loss function constructed from data term and residuals of governing equations

 Boundary conditions treated like data (constrained) or enforced by construction (unconstrained) of the neural network
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Physics Informed Neural Networks

 Networks are trained with/without data, but regularized using physical laws
* Loss function constructed from data term and residuals of governing equations
 Boundary conditions treated like data (constrained) or enforced by construction (unconstrained) of the neural network

Conventional Discretization Approaches (CFD)

discrete mesh In

e Space discretization leads to large system of ODEs
e Solution defined and dependent on mesh discretization
e Solution satisfies system of PDEs in a weak sense

 Rigorous theory for convergence and stability
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Physics Informed Neural Networks

Networks are trained with/without data, but regularized using physical laws

Loss function constructed from data term and residuals of governing equations

Boundary conditions treated like data (constrained) or enforced by construction (unconstrained) of the neural network

Conventional Discretization Approaches (CFD)

space/time

e Space discretization leads to large system of ODEs
e Solution defined and dependent on mesh discretization
e Solution satisfies system of PDEs in a weak sense

 Rigorous theory for convergence and stability

discrete mesh In

Deep-Learning Approach

continuous solution In
T space/time

PDEs converted into large optimization problem on params.
Solution dependent on training points, defined everywhere
Solution satisfies system of PDEs in a continuous sense

Convergence and stability are active fields of research
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A

* Nothing more than a function mapping an input space to an output space via a series of linear/nonlinear transformations

iInput hidden output
layer layer layer

activation
function

Conceptional View
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* Nothing more than a function mapping an input space to an output space via a series of linear/nonlinear transformations

iInput hidden output
layer layer layer

activation
function

Conceptional View

Practical Layerwise batch q — &
Implementation size
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But seriously, how do we learn equations?

1. Consider the general PDE:

() domain of interest

Slul(x) =0, x e

Blulx) =0, x€' —~__«
I’

boundary of domain

2 _
u, +u, —u- =0
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But seriously, how do we learn equations?

1. Consider the general PDE: 2. Build a NN to approximate u(x)

Slul(x) =0, x e

Blulx) =0, x€I' —~_ «
I’

boundary of domain

() domain of interest

i(x; 0) ~ u(x)

2 _
u, +u, —u- =0

2023 EDL Summer Seminar Series 38



But seriously, how do we learn equations?

1. Consider the general PDE: 2. Build a NN to approximate u(x)

Slul(x) =0, x e

Blulx) =0, x€I' —~_ «
I’

boundary of domain

() domain of interest

i(x; 0) ~ u(x)

2 _
u, +u, —u- =0

3. Distribute colocation points in the domain and boundary

Q={x:x Q)
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But seriously, how do we learn equations?

1. Consider the general PDE: 2. Build a NN to approximate u(x)

Slul(x) =0, x e
Blulx) =0, x€I' —~_ «

() domain of interest

i(x; 0) ~ u(x)

2 _
u, +u, —u- =0

X1
I Xy u(x)
boundary of domain =
3. Distribute colocation points in the domain and boundary 4. Construct loss function from residual operators
1 n 2
A L0) =— | Fal; 0) 1>+ —— ) | Blal(x; )]
Q=1{x:x€Q} | Q| 2 ’ |F|Z l
x,€€2 x,el’
I'={x:x €T} . a0 i .. PINN
0ua /0y L, F e, = U7
N +——O I
i Xr M(x)ii ou/ox,
solution network residual network
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A

1. Consider the general PDE:

Sluljx) =0, xe -
Blulx) =0, x€I' —~_ «
I

boundary of domain

() domain of interest

2 _
u, +u, —u- =0

3. Distribute colocation points in the domain and boundary

Q={x:x Q)

5. Minimize the loss function with respect to network parameters

U= i(x;0%), argmin Z(0)
0

2. Build a NN to approximate u(x)

i(x; 0) ~ u(x)

4. Construct loss function from residual operators
1

|Q

Z(0) =

3 1§la16: 017 + 'fl

x,EQ [T

B[] 0) [

A

x.€el’

l

L X u(x); ou/0x,

—

solution network i+ residual network
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Navier-Stokes equations for perfect gas

* Interested in assessing the heating predictions obtained with Loss function in Python code.
neural networks in “simple” configurations at high speed

def steady_navier_stokes_2d(coords, prim_vars):
rho = prim_vars[:,0:1]

prim_vars[:,1:2]

prim_vars[:,2:3]

prim_vars|[:,3:]

rhoxT/ (gamma*xM_infxx2)

* Previous literature is not concerned with heating

. . s2 + T_inf) * tf.maximum(T,1.0)%*1.5 / (s2 + T_infxtf.maximum(T,1.0))
(5()\I€9rl1lr1§; GE(][]E]tl()'\f;. / ((gamma-1) *x M_infx%2 x Pr)
X, rho_y, T_x, T_.y, ux, uy, v.X, v_y = gradients(prim_vars, coords)

U OF 4G OF" 8G® e e i N
n n _ n , 'V(x,)ﬁ c O X, p_y [dde.grad.jacobian(p, coords, j=j) for j in range(2)]

ot Ox Oy 0x 0y

mu * ((4.0/3.0)%u_x - (2.0/3.0)%*v_y)
mu x ((4.0/3.0)xv_y — (2.0/3.0)*u_x)

mu * (u_y + v_x)

Jo, ou oV 0 0
* T_y

2
u u- + uy T T
U = P F = P p G = P F’ = o G’ = yx tauxx_x = dde.grad.jacobian(tauxx, coords, j=0)
’ ’ X ’ ’ tauxy_x, tauxy_y = [dde.grad.jacobian(tauxy, coords, j=j) for j in range(2)]

pv puy pv-+p Txy Tyy tauyy_y = dde.grad.jacobian(tauyy, coords, j=1)
dde.grad.jacobian(qgx, coords, j=0)

pE put pvH TxxU + TxyV — (4x TyxU + TyyV — gy dde.grad.jacobian(qy, coords, j=1)
= rhox(u_x + v_y) + uxrho_x + vxrho_y
= rhox(uku_x + vku_y) + p_x — (tauxx_x + tauxy_y)/Re_inf

_pT o | £3+_u2-kv2 _ = rhox(uxv_x + vkxv_y) + p_y - (tauxy_x + tauyy_y)/Re_inf
Prom T y-ipT 2 energy =
0 rhox(ukuku_x + ukvk(v_x+u_y) + vkvkv_y) + gamma/(gamma-1.0)x(
ukp_X + vkp_y — Tx(uxrho_x + vkrho_y)/(gammaxM_inf*x2)
1 4 Ou 20v 1 40v 2 Ou g v + Ou kaT kaT - l(J*tauxx X + tauxxxku_Xx + vxtauxy_Xx + Tauxyxv_x +
T = - = ——, T = - — ——, T =T = R = —K—, = —K—— _ _ _ _
xx = H 30x 30y vy ~H 30y 30x ¥y = x T H ox 0y Ax 0x 1y 0y uxtauxy_y + tauxykxu_y + vktauyy y + tauyyxv_ y -
gxX_X = qy_y
) / Re_inf
n )
Re., C + T..T ’ (y — 1) MZPr return [mass, x_mtm, y_mtm, energy]
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2 Comparison with LAURA for flat plate

LAURA rho PINNs rho

L ' 1.2639 ' 1.20658
* Freestream conditions || 1387 L 11401

0.2 4
> - 1.0135 - 1.0144

Mo, Reo, Io K] Ty IK] vy CIK] Pr

[ 0.8884 [ 0.8887
0.0 " ——l 0.7632 I/ ———— 0.7630

3.0 5.0x10*  300.0 3000 1.4 11033 0.72

LAURA T PINNs T
. o ' 1.3534 ' 1.3551
* Network architecture and training 9651 1 9656
U2 L 11767 | L 1.1761
 Dense feed-forward network, 6 hidden layers with 32 nodes [ 1.0884 [ 1.0866
0.0 1.0000 0.9971
 Layer-wise adaptive activation function
LAURA u PINNs u
. . - . ' 1.0000 ' 1.00
50,000 Adam iterations with learning rate of 0.001 07502 s
- 0.5003 | - 0.50
* Further converged with L-BFGS algorithm [0.2505 [ 0.25
0.0007 0.00
* LAURA results
LAURA v PINNs v
_ ' 0.07461 ' 0.07503
e 81x227 node grid - 0.05596 " 005596
e L 0.03730 | L 0.03689
 Mesh adaptation to resolve shock [0.01865 [ 0.01782
0.0 —0.00000 —0.00124
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Comparison with LAURA for flat plate

g —  Boundary and shock layers well resolved with PINN
. [ LAURA
1.30 - . .
o] 1 * Heat flux computed along the entire wall (continuous
1'20 function) by taking gradient of temperature solution network
~ +
e  Does not require gradient approximation/interpolation as
W with CFD solution
1.05 -
1.00 -
0.00 0.05 0.10 0.00 0.05 0.10 _
y y 225 PINN
o LAURA
200 -
0.04 - P<
= 175 -
0.03 - té
= 150 -
3 = g
0.02 § 125 -
0.01 - g 100 ~
A
= _
0.00 - 7
O.IOO O.IO5 O.IlO O.bO O.IO5 O.I10 50 -
y y
0.0 0.2 0.4 0.6

Wall-normal slice at x ~ 0.25
Distance from leading edge
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Where can | find additional resources?

 Books | recommend

 |. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016. (www.deeplearningbook.org)

« C.E. Rasmussen, C.K.l. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006. (gaussianprocess.org/gpml)

 S. Rogers, M. Girolami. A First Course in Machine Learning, 2nd Ed. CRC Press, 2017.
 D.S. Sivia. Data Analysis: A Bayesian Tutorial. Oxford University Press, 2006.

 R.B. Gramacy. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences. CRC Press, 2020.
(bobby.gramacy.com/surrogates)

* Free online courses

 Stanford CS230: Deep Learning. Video lectures available at cs230.stanford.edu/lecture.

« MIT 6.036: Introduction to Machine Learning. Course notes and lectures at
openlearninglibrary.mit.edu/courses/course-v1:MITx+6.036+1T2019.

* Python packages: scikit-learn, Pytorch, Tensorflow, JAX, GPy, ...
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