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• Project began in January 2023
• This research is part of the 2022 ESI topic: Improved Methods for Characterization 

of Blunt-Body Dynamic Stability
• Goal is to develop novel approaches to aerodynamic modeling, data collection, and reduction
• Improve the state of the art for understanding and predicting the dynamic behavior of entry 

vehicles in flight regimes of interest spanning from Mach 0.3 to Mach 2.5

• General proposed approach:
• Create reduced order models (ROMs) of the fore- and afterbody pressure and shear force 

distributions
• Recover physically consistent flow fields from proper orthogonal decomposition (POD) modes
• Reduced high dimensional flow fields into lower dimensions using POD
• Replace linearized aerodynamic databases with ROMs, preserving more aerodynamic information 

and eliminating linearization assumptions



• Entry vehicles rely on physical experiments and CFD 
simulations to quantify dynamic behavior [1]

• From these tests, an aerodynamic database is 
generated:

• At a specified flight condition (M, h, 𝛼𝛼, 𝛽𝛽), linear aerodynamic 
coefficients are generated 

• Databases span multi flight regimes including hypersonic, 
supersonic, transonic, and subsonic, often involving multiple 
models to generate the data

• Physical tests produce few data points, with large 
amounts of uncertainty associated with data reduction 
techniques [2]

• Most testing methods do not directly measure forces and 
moments on vehicle, relying on trajectory reconstructions to 
determine dynamic stability coefficients 
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Aerodynamic Databases and Dynamic Stability

1. Ernst, Z. A Controller Development Methodology Incorporating Unsteady, Coupled Aerodynamics and Flight Control Modeling for Atmospheric Entry Vehicles. Georgia Institute of Technology, 2022.
2. C. D. Kazemba, R. D. Braun, I. G. Clark, and M. Schoenenberger, “Survey of blunt-body supersonic dynamic stability,” Journal of Spacecraft and Rockets, vol. 54, no. 1, pp. 109–127, 2017
3. Brock, J. M., and Kazemba, C. D. “Dynamic Stability Methodologies and Capabilities”. AIAA, 2023. https://doi.org/10.2514/6.2023-1335

Fig 1. Dynamic stability coefficients from 
free-flight CFD [3]



• When coupled with a trajectory optimizer,
it can provide time accurate results of 

vehicle behavior
• This is critical in dynamic stability 

quantification because there is a temporal 
dependency

• Free-to-heave, free-to-decelerate 
characteristics can be captured 

• CFD-in-the-loop flight simulations 
generate a large amount of data:

• Pressure distribution vs time
• Shear distribution vs time
• 6DOF trajectories

• Main Challenge – we want to leverage the data produced by CFD-in-the-loop flight 
simulations to quantify dynamic stability without the need for trajectory-based 
regressions
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Integrating CFD Data for Dynamic Stability Characterization

Presenter Notes
Presentation Notes
Moving toward using CFD for dynamic stability analysis
CFD gives us rich set up data that should be utilized for dynamic stability quantification
Data fusion to create better understanding of dynamic stability 
Better leverage data in cFD and physical experiments to better understand phenomena
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Methodology Overview

Instead of linearized aerodynamic coefficients, reduced order models of shear and pressure force 
distributions of the entry vehicle can be used to directly compute aerodynamic forces and moments as 
a function of freestream and vehicle state parameters



• The POST2/FUN3D framework is a CFD-RBD framework developed by the Aerospace 
Systems Design Laboratory at the Georgia Institute of Technology

• Framework interfaces between POST2 (trajectory solver) and FUN3D (CFD solver) to generate time-
accurate vehicle behavior which will be used for training data

• Framework will be used to generate vehicle dataset
• Forced motion CFD runs will be used to supplement free-flight runs in order to fully capture 

vehicle flight space and quantify aleatory uncertainty of the aerodynamics
1. Zachary Ernst, Madilyn Drosendahl, Bradford Robertson, and Dimitri Mavris, “Development of a Trajectory-Centric CFD-RBD Framework for Advanced Multidisciplinary/Multiphysics Simulation.” AIAA SCITECH 2022 Forum. 2022. AIAA 

2022-1793.
2. Zachary Ernst, Alexandra Hickey, Bradford Robertson, and Dimitri Mavris, “The Effect of Roll Rate on Simulated Entry Vehicle Ballistic Range Tests.” Journal of Spacecraft and Rockets 60 (2023), No. 1: 261-272.
3. Alexandra Hickey, Victor Petitgenet, Bradford E. Robertson, and Dimitri N. Mavris, “A Methodology for Actuating RCS Jets in a Continuous, Time-Accurate CFD Simulation.” AIAA SCITECH 2022 Forum. 2022. AIAA 2022-1673.
4. Zachary Ernst, Bradford E. Robertson and Dimitri N. Mavris, “Construction of Entry Vehicle Aerodynamic Surrogates from CFD-in-the-loop Flight Simulations” AIAA SCITECH 2023 Forum. 2023. AIAA 2023-1166.
5. Alexandra M. Hickey, Zach Ernst, Bradford E. Robertson and Dimitri N. Mavris, “Demonstration of a coupled CFD-RBD-FCS framework on Mars Science Laboratory Vehicle” AIAA SCITECH 2023 Forum. 2023. AIAA 2023-1167.
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Generating the Aerodynamic Data Set



Aerospace Systems Design Laboratory

CFD Data Generation
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1. Schoenenberger, M., Dyakonov, A., Buning, P., Scallion, W., and Van Norman, J., “Aerodynamic challenges for the Mars Science Laboratory entry, decent and landing,” 41st AIAA Thermophysics
Conference, 2009. https://doi.org/10.2514/6.2009-3914

2. Kazemba, C. D., Braun, R. D., Clark, I. G., and Schoenenberger, M., “Survey of blunt-body supersonic dynamic stability,” Journal of Spacecraft and Rockets, Vol. 54, American Institute of Aeronautics 
and Astronautics Inc., 2017, pp. 109–127. https://doi.org/10.2514/1.A33552

3. Wright, M. et al.,”The Dragonfly Entry and Descent System,” IPPW Oxford, UK., 2019.
4. Curation | Genesis, Capsule Recovery and Operations, NASA, 2023. https://curator.jsc.nasa.gov/genesis/reentry.cfm
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Entry Vehicle Test Geometry

• Motivated to study blunt-body effects, such as:
• Dynamic stability at lower supersonic and subsonic 

regime
• Increasing instability at lower Mach numbers [1]
• Complex and stochastic aerodynamic behavior of 

unsteady recirculating wake
• Deceleration and oscillation adverse stability 

implications [2]

• Genesis Sample Return Capsule was chosen as 
the geometry of interest

• Vehicle choice was motivated by:
• Previously observed instability
• Applicability to Dragonfly using scaled Genesis 

aeroshell [3]
• Availability of ballistic range test data Impacted Genesis capsule at Utah Test and Training Range [4]

Genesis capsule during assembly [4]

https://doi.org/10.2514/6.2009-3914
https://doi.org/10.2514/1.A33552
https://curator.jsc.nasa.gov/genesis/reentry.cfm


• Grid overview:
• Generated in Capstone 
• Hemispherical fluid volume
• 6 vehicle lengths in front of the vehicle
• 15 vehicle lengths in the aft direction
• 53.8 million node, semi-structured, tetrahedral 

• Additional refinement regions:
• Toroidal source placed around the shoulder of the vehicle to provide 

further refinement of key flow transitions
• Spherical source placed around the entire vehicle to allow for capture 

of the bow shock at supersonic speeds and of the forward 
propagation of the flow at subsonic speeds

• Cylindrical sources placed in the wake to ensure sufficient definition 
for turbulence modeling

• Grid refinement driven by:
• Required resolution to accurately capture pressure and shear to 

create reduced order models 
• Performance from Mach 0.3 to 2.5, through angles of attack ranging 

from -20 to 20 degrees
• Not a candidate for more complex meshing techniques like 

adaptive mesh refinement.
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Genesis Grid Generation

Isometric view of quarter Genesis grid

Full Scale Genesis Vehicle [1]

1. Desai, P. N., Mcneil Cheatwood, F., and Girdwood, A., “Entry Dispersion Analysis for the Genesis Sample Return Capsule AAS/AIAA Astrodynamics Specialist Conference ENTRY DISPERSION 
ANALYSIS FOR THE GENESIS SAMPLE RETURN CAPSULE,” Tech. rep., 1999.



• Flow field around the vehicle is generating pressure and shear forces and moments on the 
vehicle’s surface

• Important to properly model wake structures in CFD, but vehicle motion is determined by 
pressure and shear interactions on the surface of the vehicle

• Wake has multiple components that are impacting the vehicle behavior
• Aggregate behavior can be summed into a force/moment interaction occurring on the surface of the 

vehicle
• The goal of the CFD simulations are to properly resolve pressure and shear forces and 

moments on the vehicle’s surface
• ROM only needs surface pressure and shear data in order to resolve dynamic behavior of 

the vehicle
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Metrics of Interest for Reduced Order Modeling

Domain of 
Interest



• Initial simulations were run using atmospheric settings 
from Cheatwood et al. flight test data

• Data generation process should minimize the changes in 
CFD parameters over the course of the flight regime 

1. McNeil Cheatwood, F., Winchenbach, G. L., Hathaway, W., and Chapman, G., “Dynamic stability testing of the Genesis Sample Return Capsule,” 38th Aerospace Sciences Meeting and Exhibit, 2000. 
https://doi.org/10.2514/6.2000-1009.
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CFD Simulation Process

Vehicle Flight 
Parameters

M, α, Re

Steady 
Simulation

Unsteady 
Simulations

Free Flight 
Simulations

Train 
Reduced 

Order Model

• Experimenting with low subsonic and transonic 
solutions while evaluating grid performance

• A screening was performed for sample conditions:
• Mach 0.3, 0.5, 0.8, 1.5, and 2.5
• Angles of attack 0.0 degrees and 20.0 degrees

Namelist Variable Setting

Temperature [K] 292.94

Angle of Attack [deg] 0.0 and 20.0

Governing Equations compressible

Viscous Term turbulent

Turbulence Model DES

Reynolds Stress Model qcr2000

SA Rotation Correction True

Delayed DES False

Large Angle Fix on

Smooth Limiter Coefficient 1

Temporal Scheme 2ndorderOPT

Schedule CFL 0.95

Schedule CFLturb 0.90

https://doi.org/10.2514/6.2000-1009
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Genesis: Mach 0.3 at 0.0 deg AoA

• Solver settings:
• Reynolds number = 6977645.94
• Flux Construction = Roe
• Flux Limiter = hvanleer
• Timestep = 1.121E-07 
• Non-dim timestep = 0.0003846
• Subiterations = 7
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Genesis: Mach 0.5 at 0.0 deg AoA

• Solver settings:
• Reynolds number = 11629409.90
• Flux Construction = LDRoe
• Flux Limiter = hvanleer
• Timestep = 9.715E-07 
• Non-dim timestep = 0.0003333
• Subiterations = 7
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Genesis: Mach 0.8 at 0.0 deg AoA

• Solver settings:
• Reynolds number = 18607055.84
• Flux Construction = LDRoe
• Flux Limiter = hvanalbada
• Timestep = 8.096E-07 
• Non-dim timestep = 0.0002778
• Subiterations = 7
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Genesis: Mach 1.5 at 0.0 deg AoA

• Solver settings:
• Reynolds number = 34888229.7
• Flux Construction = DLDFSS
• Flux Limiter = hvanalbada
• Timestep = 5.829E-07 
• Non-dim timestep = 0.0002000
• Subiterations = 7
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Genesis: Mach 2.5 at 0.0 deg AoA

• Solver settings:
• Reynolds number = 58147049.51
• Flux Construction = DLDFSS
• Flux Limiter = hvanalbada
• Timestep = 5.22E-07 
• Non-dim timestep = 0.0001791
• Subiterations = 7












• Current CFD efforts
• Continue screening of transonic solver settings
• Further grid refinement based on boundary shear 

distribution performance
• Extend forced motion run time

• Future CFD plans
• Perform CFD-in-the-loop free flight simulations with 

POST2/FUN3D framework
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CFD Progress

Refining CFD solver settings across the entire Mach regime is critical to provide the pressure and shear 
distributions on the Genesis vehicle to train Reduced Order Models. 
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Reduced Order Modeling

20
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Leveraging CFD for Reduced Order Modeling
• CFD simulations provide the 

data needed to quantify 
vehicle behavior

• Traditionally CFD data is 
compressed into 
aerodynamic databases 

• Databases are leveraged in 
entry, descent, and landing (EDL) 
modeling and simulation

• Databases are queried during simulation to determine vehicle aerodynamic behavior
• Interpolation is used when sampling an unseen data point

• This program aims to leverage the pressure and shear surface fields, instead of 
compressing data into coefficients

• Enables ROM-in-the-loop flight simulation
• Provides the high-fidelity data of CFD-in-the-loop flight simulation, without the large computational 

expense
• Allows for Monte Carlo analysis with a higher fidelity aerodynamic input



• Surrogates are inexpensive models that 
approximate an underlying true 
function/process/model 

• Literature classifies them into categories 
in the engineering community:

• Data-fit – surface fit to a scalar response
• E.g. scalar aerodynamic databases

• Hierarchical models – Exploits varying fidelity 
between models 

• Reduced Order Models (ROMs) –
Approximates the governing-equations; 
enables faster computation of fields

• Employed as an enabler for many-query 
contexts involving expensive analyses

• E.g. Flight simulation and uncertainty 
quantification
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Surrogate Modeling

Reduced Order Models enable field data to be stored 
and modeled in a compact manner that makes field data 

accessible within many-query analyses

Design 
Parameters Responses

Design 
Parameters

Expensive 
Model

Surrogate 
Modeling

Responses
Inexpensive 
Approximate 

Model

Expensive Offline Stage: Upfront one-time cost

Inexpensive Online Stage: Reusable commodity
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Scalar Surrogate Models vs. Reduced Order Models

Scalar Models: ROMs/Field Surrogate Models:

Scalar Model:

Inputs CFD
Flow Field Surface 

Integral Force

Scalar Model:

Inputs CFD
Flow Field Surface 

Integral Moment

Field Model:

Inputs CFD
Flow Field Surface 

Integral

Moment

Force

ROMs contain more physical information, predicting many 
quantities of interest simultaneously from a single ROM

Previous studies have identified ROMs as key enablers for leveraging 
high-dimensional and high-fidelity data within coupled analysis

Pressure

Shear



• ROMs take high-fidelity data and reduce it down into a low dimension called a latent space 
through reduction of basis techniques

• Vehicle state inputs can be mapped to the latent space, allowing for the parametric 
prediction of the full order space given a series of inputs

• The latent space can be converted into the Full Order Model (FOM) using back-mapping 
techniques
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Reduced Order Modeling

Field Outputs
Interpolation/Regression

Dimensionality 
Reduction

Back-mappingVehicle State 
Inputs

Latent Space:

Full Order Space (Data set):

Data Set 
Generation

Dimension 
Reduction

Back-
mapping

Regression/
Interpolation



Data Set Generation

1. Stern, E. C., Gidzak, V. M., and Candler, G. V., “Estimation of dynamic stability coefficients for aerodynamic decelerators using CFD,” 30th AIAA Applied Aerodynamics Conference 2012, , No. June, 2012, 
pp. 2217–2230. https://doi.org/10.2514/6.2012-3225

2. Ernst, Z. J., Drosendahl, M. K., Robertson, B. E., and Mavris, D. N., “Development of a Trajectory-Centric CFD-RBD Framework for Advanced Multidisciplinary/Multiphysics Simulation,” AIAA Science and 
Technology Forum and Exposition, AIAA SciTech Forum 2022, 2022, pp. 1–19. https://doi.org/10.2514/6.2022-1793.

• Need data that spans multiple vehicle states (Mach, Angle of 
Attack, Sideslip, flow properties, etc.)

• Free-flight captures free-to-pitch, free-to-heave, free-to-oscillate 
behavior needed for dynamic stability quantification

• Simulating the vehicle in free-flight using the POST2/FUN3D 
Framework will allow for the vehicle state space to be captured 
and identify the bounds of the state space

• Stern et al. identified there is an observed correlation between 
the vehicle states [1]

• A single flight test tends to oscillate with a set frequency within a 
small range of amplitudes 

• Only a small portion of the state space can be captured with a single 
flight test

Fig 2. 𝛼𝛼 vs 𝛼̇𝛼 phase space trajectories for MSL at 
Mach 2.5 [1]

Fig 2. 𝛼𝛼 vs 𝛼̇𝛼 phase space trajectories for SIAD [2]

Free-flight simulations will provide the starting point to generating the necessary 
data set for predicting dynamic stability with a ROM

25

Data Set 
Generation

Dimension 
Reduction

Back-
mapping

Regression/
Interpolation

https://doi.org/10.2514/6.2012-3225


• Many DR techniques have been developed and tend to share 
common features

• Assume the “intrinsic” dimension of a data set is lower 
than it appears

• Find the “best” low-dimensional representation through 
optimization

• Must be ”told” what dimension the latent space must be
• DR techniques primarily differ between the specific methods 

for each step
• Different metrics and objectives have different strengths and 

weakness for the types of features that can be extracted
• Typically, we start with linear ROMs since they are 

simple, inexpensive, and require the least data 
and tuning

• Usually only pursue more complex nonlinear models 
when we know linear models are insufficient
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Dimensionality Reduction Techniques

Linear Method:
Mapping is a linear projection
✔ Simple and quick
✔ Easy data transformation

(explicit mapping)
✘ Struggles with more

complex latent space

Non-Linear Method:
Mapping is a non-linear function
✔ Better on complex problems
✘ Difficult to reconstruct data

(implicit mapping)
✘ Requires more data

Data Set 
Generation

Dimension 
Reduction

Back-
mapping

Regression/
Interpolation
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Dimensionality Reduction with POD/PCA

• For this program, we will start with POD ROMs since
• Want to start with the simplest DR techniques 
• Have many favorable properties

• The core element of any ROM is the extraction of the 
dominant features (referred to as “modes” when using 
POD)

• Assumptions
• In a high-dimensional field, the dimensions are unlikely to be 

independent
• Within the data, there is likely to exist an intrinsic coherence
• The “best” latent space representation is the one that 

preserves the most observed covariance
• Modes should be orthogonal to maximize information per 

mode

1. https://medium.com/@TheDataGyan/dimensionality-reduction-with-pca-and-t-sne-in-r-2715683819

Data Space: Latent Space:

Mapping

POD Applied to Backshell of Genesis:

[1]Data Set 
Generation

Dimension 
Reduction

Back-
mapping

Regression/
Interpolation
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Dimensionality Reduction with POD/PCA

Step-1: Initial Sampling              
(LHS Design)

𝒑𝒑 = [𝒑𝒑𝟏𝟏, … ,𝒑𝒑𝒎𝒎]

Step-2: Snapshot Matrix

𝒙𝒙𝒊𝒊 = 𝒇𝒇 𝒑𝒑𝒊𝒊
𝑿𝑿 = [𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒎𝒎]

Step-3: Perform Singular 
Value Decomposition (SVD)

𝑿𝑿 = 𝑼𝑼𝚺𝚺𝐕𝐕𝐓𝐓
𝑼𝑼 = [𝐮𝐮𝟏𝟏, … ,𝐮𝐮𝒏𝒏]

𝚺𝚺 = 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝝈𝝈𝟏𝟏, …𝝈𝝈𝒏𝒏)

Step-5: Determine Latent 
Space Coordinates of 

Training Set
𝒁𝒁 = 𝒛𝒛𝟏𝟏, … , 𝒛𝒛𝒎𝒎 = 𝚽𝚽𝐓𝐓𝐗𝐗

𝚽𝚽 = 𝑼𝑼𝒅𝒅

Step-4: Determine Latent 
Space Dimension (𝒅𝒅)

𝑹𝑹𝑹𝑹𝑹𝑹 𝒅𝒅 = ∑𝒊𝒊=𝟏𝟏
𝒅𝒅 𝝈𝝈𝒊𝒊

𝟐𝟐

∑𝒋𝒋=𝟏𝟏
𝒏𝒏 𝝈𝝈𝒋𝒋

𝟐𝟐 > 𝜹𝜹

Snapshots:

POD Modes:

Relative Information Content Plot:

Step-6: Fit mapping from 
input space to latent space

�𝒛𝒛𝒊𝒊 = 𝒈𝒈𝒊𝒊(𝒑𝒑𝒊𝒊)

Regressor:

Data Set 
Generation

Dimension 
Reduction

Back-
mapping

Regression/
Interpolation



• Once generated, the input parameters (i.e. Mach 
number, dynamic pressure, vehicle state variables, 
etc.) must be mapped to the latent space

• This process is achieved using regression techniques
• Requirements for selecting a regression model:

• Account for uncertainty/error
• Must be able to handle large data set
• Provide accurate (within some tolerance) latent space 

coordinate predictions
• Need an interpolation/regression model that can 

provide the mapping and mean squared prediction 
error

• A Kriging-variant is proposed for the initial regressor
• Will enable the quantification of interpolation error 
• Allow for aleatory uncertainty quantification

• Neural networks will be explored as a potential option
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Interpolation/Regression

Vehicle 
State Inputs

Field 
Outputs

Interpolation/
Regression

Dimensionality
Reduction

Back-
mapping

Latent Space

Full Order

Latent Space 
Coordinates

Error 
Intervals for 
unsampled 

region

Sample Kriging Regression

Data Set 
Generation

Dimension 
Reduction

Back-
mapping

Regression/
Interpolation



• The final step in ROM generation is back-mapping, in which high-dimensional field is 
reconstructed for a given latent space prediction

• For POD, it will be a linear subspace spanned by the training data, thus allowing the use of linear 
transformations for back-mapping

• Otherwise, nonlinear methods such as manifold back-mapping or neural networks have been used [1]

1. Decker et. Al. “Manifold Alignment-based Nonintrusive and Nonlinear Multifidelity Reduced Order Modeling.” AIAA Journal, 2023.
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Back-mapping

�𝒇𝒇 𝒙𝒙;𝒑𝒑 = 𝝁𝝁 𝒙𝒙 + �
𝑖𝑖=1

𝑑𝑑

𝑧𝑧𝑖𝑖 𝒑𝒑 𝝓𝝓𝑖𝑖 𝒙𝒙 = 𝝁𝝁 + 𝚽𝚽𝚽𝚽
Surrogate model of 
high-dimensional field

Mean of sample data

Latent coordinate (from regressor)

POD mode Matrix form

Spatial coordinate in 
field (from grid)

Input parameters (vehicle 
motion state, from POST2)

• �𝒇𝒇 𝒙𝒙;𝒑𝒑; : ℝ𝒑𝒑 ↦ ℝ𝒏𝒏 : Approximation of high-dimensional function
• 𝝁𝝁 𝒙𝒙 ∈ ℝ𝒏𝒏: Sample mean across the field
• 𝚽𝚽 = 𝝓𝝓𝟏𝟏, … ,𝝓𝝓𝒅𝒅 ∈ ℝ𝒏𝒏×𝒅𝒅: Matrix whose column vectors are POD modes
• 𝒛𝒛 ∈ ℝ𝒅𝒅: Vector of latent space coordinates
• 𝒑𝒑 ∈ ℝ𝒑𝒑: Vector of input parameters

Data Set 
Generation

Dimension 
Reduction

Back-
mapping

Regression/
Interpolation



• Due to the significant number of data points being input into the ROM, a L2 norm error metric 
is insufficient 

• Mean Absolute Error (MAE) will be used to quantify the ability for the components of the 
ROM to capture specific data

• Due to the modular nature of the ROM, the error can be split into two metrics: reconstruction 
error, and regression error 

• The total MAE of the ROM can be calculated by:

31

POD Error Metrics

𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
∑𝑗𝑗=1𝑣𝑣 |𝚽𝚽𝚽𝚽𝑻𝑻𝒙𝒙𝒋𝒋∗ − 𝒙𝒙𝒋𝒋|

𝑣𝑣
𝑀𝑀𝑀𝑀𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 =

∑𝑗𝑗=1𝑣𝑣 |𝒛𝒛𝒋𝒋 𝒑𝒑∗ − 𝒛𝒛𝒋𝒋|
𝑣𝑣

Unacceptably large error means POD can’t 
recover the features of interest

Unacceptably large error means the regression model 
can’t make good predictions in the latent space 

𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
∑𝑗𝑗=1𝑣𝑣 |𝒙𝒙𝒋𝒋 𝒑𝒑∗ − 𝒙𝒙𝒋𝒋|

𝑣𝑣
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ROM Implementation

• A POD ROM can be constructed using the 
CFD data produced during free-flight 
simulations

• Based on the vehicle state, the pressure and shear fields on the heatshield and 
backshell can be generated

• Force distributions can be visualized
• Aerodynamic coefficients can be generated by integrating the fields
• Dynamic stability coefficients can be generated by using derivative methods for discrete fields

• ROM can be directly coupled with trajectory simulations 
• Bypassing the aerodynamic database 
• Directly provide ROM generated forces and moments to the trajectory solver



• 3-forced motion runs of 𝐶𝐶𝑝𝑝 distributions were 
generated for initial testing of the ROM 
methodology

• Runs display pure translation motion resulting in more 
interesting features for the ROM to generate

• Each run simulated for 1 full period (5000 time steps)
• First 100 time steps eliminated to remove any 

instances of non-developed flow
• Data from runs 1 and 3 were used in the ROM 

snapshot matrix
• Run 2 was used as a validation case to test ROM 

accuracy

• POD Reconstruction Analysis:
• ROM needs 47 modes to capture 99.9% of the data 

variance in the snapshot matrix
• MAE = 0.00142
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Initial ROM Results
Run Mach Amplitude 

(m)
Phase 
(deg)

Frequency 
(Hz)

1 1.5 0.01 0 343.11

2 1.5 0.03 0 343.11

3 1.5 0.05 0 343.11



• A linear interpolator was used to 
predict the latent coordinates of the 
unseen data point 

• Amplitude = 0.03

• Linear transform used on predicted 
latent coordinates to reconstruct the 𝐶𝐶𝑝𝑝
field for the given amplitude

• Figures show 𝐶𝐶𝑝𝑝 field for single 
snapshot of the simulated forced 
motion

• Verification steps:
• CFD data from run 2 is compressed into 

the latent space and compared to the 
predicted latent coordinates of the ROM

• Resulting MAE for all the snapshots = 
7.78
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Initial ROM Results

Original CFD 𝐶𝐶𝑝𝑝 Field

ROM Reconstructed 𝐶𝐶𝑝𝑝 Field

Backshell Heatshield



𝑪𝑪𝒑𝒑 Field vs Time for CFD Field and ROM Field
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CFD 𝑪𝑪𝒑𝒑 Field

ROM 𝑪𝑪𝒑𝒑 Field

Backshell Heatshield



• By integrating over the 𝐶𝐶𝑝𝑝 field, the aerodynamic 
coefficients can be generated 

• ROM can capture the trends in the aerodynamic 
coefficients

• Discrepancies in aerodynamic coefficients 
indicate that potentially a low order mode is not 
accurately captured with a single period forcing 
function simulation

• Ongoing ROM work:
• Simulate more periods of flight for the ROM snapshot 

matrix
• Evaluate moment coefficients from the ROM
• Explore the use of a split ROM (i.e. heatshield and 

backshell fields are produced from their own ROMs)
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Aerodynamic Coefficients vs Time



Timeline/Next Steps
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• Accomplishments over the first six months:
• Genesis grid generation and testing
• Initial POD experiments with sinusoidal forced motion show promising results
• Basic interpolation and backmapping has shown the ability to predict un-sampled flight states
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Project Summary

YEAR 1

YEAR 2

YEAR 3



• Immediate:
• CFD focuses on performing free-flight runs and sampling the space
• Update ROMs to utilize free-flight data
• Focus of ROM work will be to encode awareness of the previous flow state

• Needs the ROM to predict a reasonable “next” flow state in the presence of unsteady 
aerodynamics

• Fundamental advance in the field of ROMs

• Long term:
• Implement ROM module in POST2
• ROM-in-the-loop flight simulation
• Understand aleatory and epistemic uncertainty 
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Next Steps
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