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♦This presentation applies statistics to launch vehicle design, 
but the methods may be used for other engineering 
applications 

♦Vehicle Models:  What do we know when?  How to separate 
parameters for making Monte Carlo runs
• Known when assembling the vehicle but not during design
• Known prior to committing to flight
• Unknown at lift off
• How do we correctly model the vehicle during the design 

phases?
♦Number of Monte Carlo samples

• Requirements success
• Design parameter values
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Vehicle Models
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Introduction: Varying Parameters

♦Vehicle parameters are estimated during the design phases
♦Uncertainties are relatively large

♦Many of these parameters will be known better for a specific 
rocket
♦We weigh the components for example

♦Some things are better known on flight day
♦Estimate of the winds for example
♦Known parameters can be used to design the flight day 

trajectory
♦There remains uncertainty on flight day 
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Varying Vehicle Parameters

♦ Four types of variations
♦ 1.  Uncertainty during the design phases

♦ How will the engines perform?
♦ What are the aerodynamic parameters?
♦ Uncertainty normally decreases with design maturity

♦ 2.  Know about for the particular assembled vehicle
♦ Each manufactured element differs in weight and 

performance (thrust, Isp, solid burn rate), get estimates of 
these (for example, if the engine is tested prior to flight)

♦ Axial force coefficient will be known better by the time the 
vehicle flies (wind tunnel testing)

♦ Need to be able to meet requirements and design limits with these 
assembled vehicles, even early in the design phase

♦ Design the trajectory in simulation with these as “knowns”
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Varying Vehicle Parameters
♦ Four types of variations

♦ 3.  Know about on launch day
♦ Know for day of launch trajectory design and go/no go 

decision
♦ Temperature estimate (solid rocket motor)
♦ Propellant loading estimate
♦ Wind estimate

♦ 4.  Don’t know on launch day
♦ Remaining uncertainties in all parameters (engine 

performance, aerodynamics, propellant loading, and more 
detailed parameters such as actuator modeling)

♦ If we throw all these into the same Monte Carlo simulation, we won’t 
get the right answer for anything (mission success, flight performance 
reserve, maximum dynamic pressure, thermal indicators, maximum 
acceleration, ….)
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♦ Why it’s critical to separate the unknowns
♦ Assume both pre-flight known items and flight day unknowns have the same 

standard deviation and are characterized by Normal distributions
♦ This example assumes you need to meet mission success requirements when 

launching a 3 sigma vehicle model

Distribution of 
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Effects

Distribution of 
Flight Day Effects

3 sigma vehicle 
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Number of standard deviations



Some Vehicle Parameters of Interest

♦ Heavy/slow vehicle
♦ Lowest payload capability (or lowest remaining propellant)
♦ Longest time to clear the tower, most liftoff drift
♦ Most lofting, so may be worst abort conditions

♦ Light/fast vehicle
♦ Highest acceleration
♦ Highest dynamic pressure
♦ Highest bending loads
♦ Max temperatures

♦ Hybrid
♦ For some parameters, a different model might be appropriate

♦ For example, a booster stage with high performance and a high mass 
upper stage and payload might give driving compression loads
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Steps for the Vehicle Models
♦ 1. Determine the partial derivatives of the desired varying outputs (z) with respect to 

each of the parameters that can vary (xi) but will be known for a given assembled 
vehicle (for example, the partial of dynamic pressure with respect to burn rate).

• Use the standard deviation for each parameter, from the uncertainty portion that will be known when 
the vehicle is assembled

• Generate the standard deviation for the composite impact of all the parameters

♦ 2. Determine the target (z) values of each parameter (e.g. dynamic pressure, heat rate, 
acceleration, liftoff thrust/weight ratio, low fuel, etc.)

• Assuming the composite behaves as a Gaussian (Normal) distribution, we have
z = n σz

where n is the desired sigma level, e.g. n = 3 corresponds to 99.865%. We typically use a 90% vehicle 
model so that we don’t have too much conservatism (3 sigma vehicle with 3 sigma flight day variations).

♦ 3. Determine the vehicle model that uses the total set of parameters and maximizes the 
statistical chance of ending up with that vehicle.

• Constrained numerical optimization 
− Target z values are the constraints (could be multiple targets for a vehicle model, e.g. all light/fast target params)
− xi values are the variables to be chosen
− Maximize the joint probability of the xi from the xi distributions (can be Normal, Uniform, etc.)
− The more influential parameters will vary more

Some parameters will 
have big impacts, 
others not so much
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Monte Carlo Procedure

♦ A wind estimate, a propellant temperature estimate (for solid motors), and 
liquid propellant loading estimates are known when the launch go/no go 
decision is made.

♦ Procedure
♦ Define the vehicle model to match the z targets
♦ Run a Monte Carlo simulation to generate the desired percentage of 

natural environments case 
♦ e.g. suppose we want to launch in a 95% bad temperature/wind 

combination
♦ Run Monte Carlo simulation for the remaining flight day uncertainties

♦ Includes remaining uncertainty in all the parameters used to define 
the vehicle model

♦ Includes remaining environmental uncertainties (e.g. winds)
♦ Do this for each stressing vehicle model, launch month, and mission 

scenario
♦ Show requirements are met for these cases
♦ Determine parameters such as Flight Performance Reserve required 

for mission success, as well as design-driving values.
♦ Typically hundreds of values of interest
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Flight Control Parameters
♦ Aleatory uncertainty:  it really varies from flight to flight.  Example:  Winds, solid burn 

rate
♦ Epistemic uncertainty:  there is really only (approximately) a single value, but we don’t 

know it.  
♦ The vehicle parameters we have already separated are mathematically epistemic

• We don’t know them now in general, but will estimate the single value prior to flight.  So we need to 
cover for the variations in the single value. (Mass is a simple example)

♦ What about other epistemic values?
• e.g. aerodynamic moment coefficients, slosh mode frequency, first vibration mode. 

♦ These remaining epistemic parameters are primarily impacts to flight control
• Flight control effects are highly nonlinear, so it would not be appropriate to just examine the bounds, or 

specific values (e.g. build a 90% vehicle model), of these parameters and assume all combinations 
would be covered

♦ Not feasible to run a Monte Carlo simulation with varying flight control parameters for 
each sample of flight day winds and vehicle models

♦ A reasonable approach seems to be:
• Monte Carlo run with all parameters included to determine the effects of parameter interactions (use the 

Monte Carlo runs we already have)
• Sensitivity studies with individual parameters to see where the system is sensitive and to ensure 

robustness
• Margin on flight control stability results
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Number of Monte Carlo Samples
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Requirements and Design Values

♦ Typical requirements statements specify probabilistic success percentages
♦ For example, 99.73% with 10% consumer risk (or 90% confidence)

♦ Or we want to design to a certain percentage worst case
♦ For example, 99.865% high maximum acceleration
♦ It doesn’t make sense to say 100%

♦ So, how do you capture a certain percentage value from a Monte Carlo 
simulation?

♦ The values we are looking for are among the last few samples in the tails of 
the data

♦ So there will be random variation in these values according to the 
samples we randomly select

♦ If we run a sim with a different random seed, we will get a different 
answer

♦ Fitting a distribution to the data is not generally satisfactory because we are 
interested in the outer few outliers

♦ The behavior of these outliers is generally not Gaussian



Example of Why Fitting a Distribution Isn’t So Good
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Example from data:  The 
tail of these wind profiles 
is not Gaussian.  X-axis 

is sigma level.

Plotted is the change in 
easterly wind component 
from the measured value
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Order Statistics
♦ We develop a method here of addressing requirements success, and determining 

desired percentage values of parameters, using Order Statistics
♦ Order the results from smallest to largest and study the statistics of the 

outlier cases
♦ This development is not new to statistics theory
♦ This is also called “acceptance sampling” in quality engineering



Examining Results of a Monte Carlo Run as Successes and Failures
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N is the number of samples
p is the actual failure probability
k is the number of failures observed

If we take 2000 samples, with differing failure probability, how many failures will we see? 

It varies, and the chance of seeing exactly 5 failures is nearly the same in these cases

• Given 5 failures in 2000 samples 
(=0.0025*2000), what is the actual 
probability of failure?  It varies.
• So, given a required success 
probability and a confidence level, how 
do we determine how many failures are 
allowed?



Risk for Maximum Likelihood and 10% Risk
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• 0.25% is not the 50% risk/confidence level, as may be thought
• About a 61% chance that if our requirement is 0.25% failures, the actual 
failure rate is higher
• At about 0.47% failures the risk drops below 10%



Consumer Risk and Producer Risk
♦ Required success:  

99.73%
♦ Graphed: probability of 

seeing 2 or fewer failures 
if the actual failure 
probability is as 
specified on the x-axis

♦ At 0.27%, there is a 10% 
chance we would get 2 or 
fewer failures if we run 
2000 samples (and 
accept a bad product if 
99.73% success is the 
requirement).  This is 
consumer risk.
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♦ There is a 90% chance we reject a batch that actually meets the 
requirement by seeing more than 2 failures (with 99.73% actual success).  
This is producer risk (rejecting a good product).

♦ So we design for a lower percentage failure rate in order to reduce the 
producer risk.

“Operating Characteristic” curve



Consumer Risk and Producer Risk
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♦ Design for a lower failure probability to reduce producer risk
♦ Accept a higher failure probability to reduce consumer risk



Value of More Samples

20National Aeronautics and Space Administration

♦ Increasing the number of samples 
tightens the operating characteristic

♦ Less conservatism needed to meet 
the 10% consumer risk number

♦ If we ignore producer risk, we can 
use a smaller number of Monte Carlo 
samples but need a more 
conservative design

♦ 2/2000 = 0.001, 44/20000 = 0.0022, 509/200000 = 0.002545  



Sample of Number of MC Samples Required
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♦ Need more samples if we want to allow for a higher failure fraction (smaller producer 
risk)

♦ Need more samples for a higher percentage of success
♦ Need more samples for lower consumer risk
♦ If the number of samples possible is limited by expense, we have to accept proving a 

lower level of success, or higher consumer risk, or both (with higher producer risk)
♦ Number of samples does not depend on the number of input parameters

Failure 
Fraction 
Desired

Consumer 
Risk
(%)

Allowable 
Number of 

Failures

Minimum 
Number of 

Runs 
Necessary

Allowable 
Failure 
Fraction

0.02 10 0 114 0
0.02 10 1 194 0.005155
0.02 10 2 265 0.007547

0.0027 10 0 852 0
0.0027 10 1 1440 0.000694
0.0027 10 2 1970 0.001015
0.00135 10 0 1705 0
0.00135 10 1 2880 0.000347
0.00135 10 2 3941 0.000507
0.00135 10 10 11410 0.000876
0.00135 10 20 20030 0.000999
0.00135 50 0 514 0
0.00135 50 1 1243 0.000805
0.00135 50 2 1981 0.001010
0.00135 50 10 7903 0.001265
0.00135 50 20 15310 0.001306

Still much less 
than 0.02

Getting closer 
to 0.00135

Measure of 
conservatism 

needed
Considering 

only consumer 
risk



Order Statistics and Design Parameters
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♦ With “Order Statistics”, we simply order our 2000 results from lowest to highest
♦ The failure cases are those that exceed the limiting value (orbit insertion error, 

propellant remaining, roll attitude error, stage separation clearance, …..)
♦ How do we determine the 99.865% with 10% consumer risk maximum dynamic 

pressure, acceleration, …?
♦ Interpolate between the outliers assuming similar triangles

♦ If 1705 samples, the 
99.865%/10% value is 
equal to the value of 
point 1705

♦ Along segment B-A, the 
99.865%/10% value of 
accel is found by 
interpolating between 
point 2000 and point 1999

acc1999 + (acc2000 - acc1999) *
(2880 - 2000) / (2880 - 1705)



Why this Method is so Useful
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♦ These results are based on binomial successes and failures 
and are not tied to the underlying distribution

♦ These results don’t depend on how many parameters are 
varying in the input to the Monte Carlo simulation 

♦ So they hold for all distributions of the input/output data and for 
any number of inputs

♦ Be careful however: If you run a lot of samples and think you 
have the variations well pinned down, they are only as good as 
the accuracy of the input values and uncertainties.



Summary
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♦ This presentation showed methods for:
♦ Separating and analyzing uncertainties that are  

♦ Known when a vehicle is assembled
♦ Known on flight day
♦ Unknown on flight day 

♦ Determining how many Monte Carlo samples are needed in order to
verify probabilistic requirements

♦ Addressing the level of conservatism versus the number of Monte 
Carlo samples

♦ Determining the value of various design parameters
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