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Derive dynamical equations of motion for a system of rigid
bodies attached to one another
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Possible Approaches

• momentum principles
• Newton-Euler method
• D’Alembert’s principle
• Lagrange’s equations
• Hamilton’s canonical equations
• Boltzmann-Hamel equations
• Gibbs’ equations
• Kane’s method

• Kane’s equations have the simplest form and are
derived with the least amount of labor1

1Kane, T. R., and Levinson, D. A., “Formulation of Equations of Motion
for Complex Spacecraft,” Journal of Guidance and Control, Vol. 3, No. 2,
1980, pp. 99–112.
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Newton’s Second Law

System S is made of ν particles Pi, each of mass mi

(i = 1, . . . , ν), moving in a Newtonian reference frame N.

F1 = m1
Na P1 (1)

F2 = m2
Na P2 (2)

. . .

Fν = mν
Na Pν (3)

or, a single vector equation
ν∑

i=1

(
Fi − mi

Na Pi
)
= 0 (4)

from which one can obtain a scalar equation
ν∑

i=1

(
Fi − mi

Na Pi
)
· v = 0 · v = 0 (5)

where v is any vector
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Basic Statement of Kane’s Method

For a holonomic system possessing n degrees of freedom in
frame N

ν∑
i=1

(
Fi − mi

Na Pi
)
· Nv Pi

r = 0 (r = 1, . . . , n) (6)

where Nv Pi
r is called the rth holonomic partial velocity of

particle Pi in N. (More about how to find partial velocities
later.)
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Generalized Forces

Kane calls Fr the rth generalized active force for S in N, and
defines it as

Fr
△
=

ν∑
i=1

Fi · Nv Pi
r (r = 1, . . . , n) (7)

F ⋆
r is the rth generalized inertia force for S in N, defined as

F ⋆
r

△
=

ν∑
i=1

−mi
Na Pi · Nv Pi

r (r = 1, . . . , n) (8)

Kane’s dynamical equations of motion:

Fr + F ⋆
r = 0 (r = 1, . . . , n) (9)
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Advantages of Generalized Forces

• Generalized active forces
• Constraint forces do not appear in Kane’s equations of

motion
• Forces exerted on particles across smooth surfaces
• Contact forces exerted by two bodies rolling on each

other
• Constraint forces do appear when using Newton-Euler

or D’Alembert’s method; extra work to eliminate them
• If constraint forces are of interest, Kane shows how to

bring them into evidence
• Generalized inertia forces

• Forming Kane’s generalized inertia forces is much
easier than

• Forming the system kinetic energy and then
differentiating it (Lagrange’s Eqs.)

• Forming the Gibbs function and then differentiating it
(Gibbs’ method)
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Motion Variables

When the configuration in N of a system S can be described
with n generalized coordinates qr, one can define n motion
variables ur as linear combinations of the time derivatives of
qr,

ur
△
=

n∑
s=1

Yrs
.qs + Zr (r = 1, . . . , n) (10)

where Yrs and Zr (r, s = 1, . . . , n) are functions of q1, . . . , qn

and the time t. Must be able to solve Eqs. (10) uniquely for
.q1, . . . ,

.qn.

One of the chief disadvantages of using Lagrange’s
equations is that state variables cannot be u’s and must be
.q’s.
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Partial Velocities, Partial Angular Velocities

The velocity in any reference frame A of a particle P
belonging to S can be expressed uniquely in terms of motion
variables and partial velocities Av P

r ,

Av P =

n∑
r=1

Av P
r ur +

Av P
t (11)

The angular velocity in any reference frame A of a rigid body
B belonging to S can be expressed uniquely in terms of
motion variables and partial angular velocities Aω B

r ,

Aω B =

n∑
r=1

Aω B
r ur +

Aω B
t (12)

where Av P
r , Aω B

r (r = 1, . . . , n), Av P
t , and Aω B

t are functions
of q1, . . . , qn and the time t.
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Example, Single Particle

N
P

FP N
P

aPNmP

Nv P
r ·

(
FP − mP

Na P) = 0 (r = 1, 2, 3) (13)
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Motion Variables, Partial Velocities

N P

n1^

n2^

q
2

q
3

q
1

n3^

The velocity of P in N
Nv P =

.q1n̂1 +
.q2n̂2 +

.q3n̂3
△
= u1n̂1 + u2n̂2 + u3n̂3 (14)

• Motion variables ur are time derivatives of generalized
coordinates qr (r = 1, 2, 3)

• Partial velocities are simply the vector coefficients of
the motion variables in the expression for Nv P; that is,
Nv P

r = n̂r (r = 1, 2, 3)
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Contribution of a Rigid Body to
Generalized Active Forces

Let the set of contact forces and distance forces acting on a
rigid body B be equivalent to a single force FB applied at the
mass center, B⋆, together with a couple whose torque is TB.

The contribution of B to Fr is given by

(Fr)B = Nv B⋆

r · FB + Nω B
r · TB (r = 1, . . . , n) (15)

where Nv B⋆

r is the rth partial velocity of B⋆ in N, and Nω B
r is

the rth partial angular velocity of B in N.
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Contribution of a Rigid Body to
Generalized Inertia Forces

The contribution of B to F ⋆
r is

(F ⋆
r )B = Nv B⋆

r · R⋆ + Nω B
r · T⋆ (r = 1, . . . , n) (16)

Inertia force for B in N:

R⋆ △
= −mB

Na B⋆
(17)

where mB is the mass of B, and Na B⋆
is the acceleration in

frame N of the mass center of B.
Inertia torque for B in N:

T⋆ △
= −

(
I · NαB + Nω B × I · Nω B) = −

Nd NH B/B⋆

dt
(18)

where I is the inertia dyadic of B for B⋆, Nω B is the angular
velocity of B in N, and NαB is the angular acceleration of B
in N.
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Example, Rigid Body

B FBB★

TB

Substitution from Eqs. (15)–(18) into Eqs. (9) yields

Nv B⋆

r ·
(

FB − mB
Na B⋆

)
+ Nω B

r ·
(

TB −
Nd NH B/B⋆

dt

)
= 0

(r = 1, . . . , 6) (19)
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Partial Velocities, Partial Angular Velocities

B B★
Nb1

^

b2
^

b3
^

The velocity of B⋆ in N

Nv B⋆ △
= u1n̂1 + u2n̂2 + u3n̂3 (20)

The angular velocity of B in N

Nω B = ω1b̂1 + ω2b̂2 + ω3b̂3
△
= u4b̂1 + u5b̂2 + u6b̂3 (21)

• Motion variables u4, u5, u6, are linear combinations of
the time derivatives of generalized coordinates

• Partial angular velocities are simply the vector
coefficients of the motion variables in the expression for
Nω B; that is, Nω B

r = 0 (r = 1, 2, 3), Nω B
r = b̂r−3

(r = 4, 5, 6)
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Equations of Motion

r = 1 2 3 4 5 6
Nv B⋆

r n̂1 n̂2 n̂3 0 0 0
Nω B

r 0 0 0 b̂1 b̂2 b̂3

Dynamical equations of motion:

n̂r ·
(

FB − mB
Na B⋆

)
= 0 (r = 1, 2, 3) (22)

b̂r−3 ·
(

TB −
Nd NH B/B⋆

dt

)
= 0 (r = 4, 5, 6) (23)

Equations (23) immediately lead to Euler’s rotational
equations of motion; Lagrange’s approach yields equations
that are much more complex
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Example, Smooth Ball-and-Socket Joint

B★
C★

p
B p

C

FB

TB

FC

TC

R -RB
C

Nv B⋆

r ·
(

FB + R − mB
Na B⋆

)
(24)

+ Nω B
r ·

(
TB + pB × R −

Nd NH B/B⋆

dt

)
+ Nv C⋆

r ·
(

FC − R − mC
Na C⋆

)
+ Nω C

r ·
(

TC − pC × R −
Nd NH C/C⋆

dt

)
= 0 (r = 1, . . . , 9)

It can be shown that the constraint force R does not
contribute to the equations of motion
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Noncontributing Force

B★
C★

p
B p

C

FB

TB

FC

TC

R -RB
C

Nv C⋆
= Nv B⋆

+ Nω B × pB + Nω C × (−pC)

Nv C⋆

r = Nv B⋆

r + Nω B
r × pB − Nω C

r × pC

Nv C⋆

r · (−R) = − Nv B⋆

r · R − Nω B
r × pB · R + Nω C

r × pC · R
= − Nv B⋆

r · R − Nω B
r · pB × R + Nω C

r · pC × R

These terms cancel the other terms involving R in Eqs. (24),
showing that R ultimately does not appear in Kane’s
equations of motion, as is claimed on slide 8.
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Partial Velocities, Partial Angular Velocities

One possible set of motion variables

Nv B⋆
= u1n̂1 + u2n̂2 + u3n̂3 (25)

Nω B = u4b̂1 + u5b̂2 + u6b̂3 (26)
Nω C = u7ĉ1 + u8ĉ2 + u9ĉ3 (27)

r = 1 2 3 4 5 6 7 8 9
Nv B⋆

r n̂1 n̂2 n̂3 0 0 0 0 0 0
Nω B

r 0 0 0 b̂1 b̂2 b̂3 0 0 0
Nω C

r 0 0 0 0 0 0 ĉ1 ĉ2 ĉ3

Nv C⋆

r =


n̂r (r = 1, 2, 3)
b̂r−3 × pB (r = 4, 5, 6)
−ĉr−6 × pC (r = 7, 8, 9)
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Nonholonomic Systems

A nonholonomic system is one that is subject to motion
constraints

Examples of motion constraints

• Rolling (absence of slipping)

• Sharp-edged blade Nv P · b̂2 = 0

With Lagrange’s method, must introduce and subsequently
eliminate multipliers associated with unknown constraint
forces

With Kane’s method, one accounts for the motion
constraints when forming velocities of points, and angular
velocities of rigid bodies: don’t need to introduce multipliers
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Example, Rolling Sphere

B

RB

B★

B

N

1̂
n

2̂
n

3̂
n

N

Nω B = u1n̂1 + u2n̂2 + u3n̂3 (28)
Nv B⋆

= u4n̂1 + u5n̂2 (29)

Configuration constraint: B⋆ must remain a constant
distance above horizontal surface, so Nv B⋆ · n̂3 = 0.

Motion constraint: for rolling to take place, Nv B = Nv N = 0
Nv B = Nv B⋆

+ Nω B×(−RBn̂3) = (u4−RBu2)n̂1+(u5+RBu1)n̂2
(30)Nonholonomic constraint equations

u4 = RBu2 u5 = −RBu1 (31)
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Partial Velocities, Partial Angular Velocities

The rolling sphere has three degrees of freedom in N. Use
the nonholonomic constraint equations to rewrite Nω B and
Nv B⋆

Nω B = u1n̂1 + u2n̂2 + u3n̂3 (32)
Nv B⋆

= RB(u2n̂1 − u1n̂2) (33)

Nonholonomic partial angular velocities, Nω̃ B
r , and

nonholonomic partial velocities, N ṽ B⋆

r :

r = 1 2 3
Nω̃ B

r n̂1 n̂2 n̂3

N ṽ B⋆

r −RBn̂2 RBn̂1 0
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Equations of Motion

Dynamical equations of motion

N ṽ B⋆

r ·
(

F − mBgn̂3 − mB
Na B⋆

)
(34)

+ Nω̃ B
r ·

(
−RBn̂3 × F −

Nd NH B/B⋆

dt

)
= 0 (r = 1, 2, 3)

where F is the contact force applied to B at B. Note that with
Nv B = 0, Eq. (30) yields

N ṽ B⋆

r = Nω̃ B
r × RBn̂3 (r = 1, 2, 3) (35)

Hence
N ṽ B⋆

r · F + Nω̃ B
r · (−RBn̂3 × F)

= ( Nω̃ B
r × RBn̂3) · F − Nω̃ B

r · (RBn̂3 × F) (36)
= Nω̃ B

r · (RBn̂3 × F)− Nω̃ B
r · (RBn̂3 × F) = 0 (r = 1, 2, 3)

and F ultimately does not appear in Kane’s equations of
motion, as is claimed on slide 8.
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