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A set of equations of motion for a generic tilt-rotor aircraft is presented. Equations gov-
erning the motion of the multibody vehicle are derived using Kane’s method and shown in
a compact form that is easily implemented. Contributions of aerodynamic and propulsive
forces to the generalized active forces can be readily included. Simulation results presented
for a four-rotor configuration illustrate the increased fidelity a multibody formulation pro-
vides compared to the traditional single-body approach.

I. Introduction

Electric vertical take-off and landing vehicles (eVTOL) have gained popularity recently in the emerging
market of Urban Air Mobility (UAM). UAM vehicle configurations draw upon the advantages of traditional
rotorcraft and fixed-wing aircraft. Fixed-wing aircraft offer longer endurance, better efficiency, and opera-
tions at high speeds, whereas rotorcraft have the ability to take off and land vertically, hover, and maneuver
in confined space, as discussed in Ref. [1]. UAM vehicles are generally categorized into two types: tilt-wing
(Refs. [1,2]) and tilt-rotor (Refs. [3–5]). Often in flight dynamic simulations, the vehicle is treated as a single
rigid body; motion of individual rotors, nacelles, and wing sections relative to the fuselage is ignored. This
approach can sometimes provide reasonably accurate results. However, when the mass and inertia of these
appendages are significant compared to those of the main body, or appendages are moving at high relative
speeds, or large motor torques are involved, it becomes necessary to simulate the dynamics of the multibody
system. These dynamics must be well understood by the flight control engineer as they may adversely affect
vehicle stability or handling qualities.

There appear to be three general categories of literature dealing with modeling and simulation of tilt-
rotor aircraft. The first of these, exemplified by Refs. [6–8], involves an analytical single-rigid-body approach,
where effects like rotor aerodynamics and blade flapping are treated with various levels of fidelity. In the
second category, multibody models are implemented in commercial software, as presented in Refs. [9, 10].
These simulations are highly complex and involve hundreds of states, making it difficult to gain insight into
the underlying dynamics of the vehicle. In the third category, where the present work belongs, an analytical
multibody approach is taken. Reference [11] develops multibody equations using d’Alembert’s principle. A
majority of the details are withheld from the reader and a final set of equations is not provided. Reference
[12] derives multibody equations for a two-rotor configuration using Newton’s method; however, only the
fuselage force and moment equations are provided. Reference [13] derives multibody equations for a two-rotor
configuration using Kane’s method. It is assumed that the two nacelles are tilted synchronously, allowing
them to be modeled as one rigid body. A drawback of this approach is that the resulting equations cannot be
used to simulate differential gimbaling of the nacelles, such as what is required to perform a yaw maneuver
during hover. Motion of the rotors relative to the nacelles is not modeled; thus, the system consists of two
rigid bodies having seven degrees of freedom. None of the aforementioned references establish the validity
of the complex governing equations by checking for conservation of system angular momentum and kinetic
energy.

The present work provides the reader with a set of detailed dynamical equations of motion that can be
readily implemented and verified. Kane’s method, as set forth in Ref. [15], is used in Sec. II to derive equations
of motion for a generic tilt-rotor aircraft with n rotors. The multibody model accounts for independent,
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relative motion between each nacelle and the fuselage, and between each rotor and the nacelle to which it is
connected. The system possesses 6+2n degrees of freedom. The equations are applied in Sec. III to a specific
notional vehicle with four rotors and solved numerically for two cases. The first case serves as a check of
the validity of the equations and the numerical solutions; conservation of system kinetic energy and angular
momentum is demonstrated when the vehicle is not subject to external forces or the action of internal motors.
The second case begins with the vehicle hovering. Motor torques are applied to tilt the nacelles forward,
resulting in forward motion of the vehicle, and then the nacelles are returned to their original positions.
In both cases the results of the multibody simulation are compared to those of a single-body simulation.
Section IV summarizes the current work.

II. Dynamics

A. System Description

Figure 1 provides a notional example of a tilt-rotor aircraft with four rotors. A generic multibody vehicle
is modeled as a rigid body B having mass mB , together with n rigid, axisymmetric propellers D1, . . . , Dn,
each of mass mD. The mass center of the vehicle without propellers is denoted by B⋆ and the individual
propeller mass centers are denoted by D⋆

i (i = 1, . . . , n). A set of right-handed, mutually perpendicular unit

vectors fixed in B is introduced such that b̂1 is directed from the tail to the nose, b̂2 is directed to the
starboard wing, and b̂3 completes the set. Each propeller is connected to B by two revolute joints. The
first joint is parallel to b̂2 and permits the nacelle, Ci, to move relative to B. The second joint is parallel
to the propeller’s axis of symmetry and permits the rotor to move relative to the nacelle. In this work, the
mass and inertia of the nacelles are neglected. D⋆

i is offset by a distance li from the axis of the first revolute
joint. A set of right-handed, mutually perpendicular unit vectors fixed in reference frame Ci is introduced
such that ĉ2 = b̂2 is parallel to the first revolute joint and ĉ1, which has the same direction as the thrust
force applied by the propeller, is parallel to the second revolute joint. Angular displacement of the first
joint is denoted by the angle δi whereas the rotation of the propeller Di relative to Ci is measured by an
angle ϕi. (Strictly speaking, a subscript i should accompany unit vectors ĉ1, ĉ2, and ĉ3 but it is omitted for
convenience.) Unit vectors fixed in B are related to those fixed in Ci by the direction cosine matrix in Table
1.

Figure 1. Notional tilt-rotor aircraft with four propellers (image credit: Ref. [14]).
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Table 1. Direction cosine matrix

b̂1 b̂2 b̂3

ĉ1 cos δi 0 − sin δi

ĉ2 0 1 0

ĉ3 sin δi 0 cos δi

B. Velocities and Accelerations

The velocity NvB⋆

of B⋆ in an inertial reference frame N is defined in terms of three motion variables u1,
u2, and u3, as

NvB⋆

= u1b̂1 + u2b̂2 + u3b̂3 (1)

The angular velocity NωB of B in N is defined in terms of motion variables u4, u5, and u6, as

NωB = u4b̂1 + u5b̂2 + u6b̂3 (2)

The angular velocity Nω Ci of Ci in N is defined as

Nω Ci = u4b̂1 + (u5 + u6+i)b̂2 + u6b̂3 (i = 1, . . . , n) (3)

where u6+i
△
=

.
δi. The angular velocity NωDi of Di in N is defined as

NωDi = u4b̂1 + (u5 + u6+i)b̂2 + u6b̂3 + u6+n+iĉ1 (i = 1, . . . , n) (4)

where u6+n+i
△
=

.
ϕi. The angular momentum of B relative to B⋆ in N is given by

NHB/B⋆

= IB/B⋆

· NωB (5)

where IB/B⋆

is the central inertia dyadic of B. The time derivative in N of NHB/B⋆

is given by

NdNHB/B⋆

dt
= IB/B⋆

·
BdNωB

dt
+ NωB × IB/B⋆

· NωB (6)

where Nd/dt indicates differentiation with respect to time in N . The angular momentum of Di relative to
D⋆

i in N is given by
NHDi/D

⋆
i = IDi/D

⋆
i · NωDi (i = 1, . . . , n) (7)

where IDi/D
⋆
i is the central inertia dyadic of Di. A set of right-handed, mutually perpendicular unit vectors

d̂1, d̂2, and d̂3 are fixed in Di such that d̂1 = ĉ1. Because Di is axisymmetric, one may write IDi/D
⋆
i =

Isd̂1d̂1 + It(d̂2d̂2 + d̂3d̂3) where Is is the central principal moment of inertia for a line parallel to the
axis of symmetry, and It is the central principal moment of inertia for any line perpendicular to the axis
of symmetry. Thus, one may also write IDi/D

⋆
i = Isĉ1ĉ1 + It(ĉ2ĉ2 + ĉ3ĉ3). The time derivative in N of

NHDi/D
⋆
i is given by:

NdNHDi/D
⋆
i

dt
= IDi/D

⋆
i ·

CidNωDi

dt
+ Nω Ci × NHDi/D

⋆
i (i = 1, . . . , n) (8)

= Is
[ .
u6+n+i +

.
u4 cos δi −

.
u6 sin δi − (u4 sin δi + u6 cos δi)u6+i

]
ĉ1 +[

It(
.
u5 +

.
u6+i) + Is(u4 sin δi + u6 cos δi)u6+n+i

+ (Is − It)(u4 sin δi + u6 cos δi)(u4 cos δi − u6 sin δi)
]
ĉ2 +[

It(
.
u4 sin δi +

.
u6 cos δi + u4u6+i cos δi − u6u6+i sin δi)

− Isu6+n+i(u5 + u6+i) + (It − Is)(u5 + u6+i)(u4 cos δi − u6 sin δi)
]
ĉ3 (9)

The position vector rB
⋆Pi from B⋆ to a point Pi that is fixed in B and in Ci can be defined as

rB
⋆Pi

△
= L1,ib̂1 + L2,ib̂2 + L3,ib̂3 (i = 1, . . . , n) (10)
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where L1,i, L2,i, and L3,i are constants. The position vector from Pi to D⋆
i , a point fixed in Ci and in Di,

is given by
rPiD

⋆
i = liĉ1 (i = 1, . . . , n) (11)

Hence, the position vector rB
⋆D⋆

i from B⋆ to D⋆
i is given by

rB
⋆D⋆

i = rB
⋆Pi + rPiD

⋆
i

= L1,ib̂1 + L2,ib̂2 + L3,ib̂3 + liĉ1

= (L1,i + li cos δi)b̂1 + L2,ib̂2 + (L3,i − li sin δi)b̂3

△
= k1,ib̂1 + k2,ib̂2 + k3,ib̂3 (i = 1, . . . , n)

(12)

The velocity NvD⋆
i of D⋆

i in N is given by

NvD⋆
i = NvB⋆

+ NωB × rB
⋆Pi + Nω Ci × liĉ1

= (u1 + k3,iu5 − k2,iu6 − li sin δiu6+i)b̂1 + (u2 − k3,iu4 + k1,iu6)b̂2

+ (u3 + k2,iu4 − k1,iu5 − li cos δiu6+i)b̂3

△
= λ1,ib̂1 + λ2,ib̂2 + λ3,ib̂3 (i = 1, . . . , n) (13)

The acceleration N aB⋆

of B⋆ in N is defined as

N aB⋆

=
NdNvB⋆

dt
=

BdNvB⋆

dt
+ NωB × NvB⋆

(14)

The acceleration N aD⋆
i of D⋆

i in N is defined as

N aD⋆
i =

NdNvD⋆
i

dt
=

BdNvD⋆
i

dt
+ NωB × NvD⋆

i (i = 1, . . . , n)

=
[ .
u1 + k3,i

.
u5 − li sin δi

.
u6+i − cos δiu6+ili(u5 + u6+i)− k2,i

.
u6 + u5λ3,i − u6λ2,i

]
b̂1+[ .

u2 − k3,i
.
u4 + u4u6+ili cos δi + k1,i

.
u6 − u6u6+ili sin δi − u4λ3,i + u6λ1,i

]
b̂2+[ .

u3 − k1,i
.
u5 − li cos δi

.
u6+i + sin δiu6+ili(u5 + u6+i) + k2,i

.
u4 + u4λ2,i − u5λ1,i

]
b̂3

(15)

C. Forces and Moments

The set of external forces acting on B is equivalent to a single force FB applied at B⋆, together with a
couple whose torque is TB . The principal external forces are due to gravity and aerodynamics. Likewise,
the set of external forces acting on Di is equivalent to a single force Fi applied at D⋆

i , together with a couple
whose torque is Ti (i = 1, . . . , n). The principle external forces acting on each rotor are due to gravity and
aerodynamics; thrust resulting from aerodynamic lift applied to the propeller blades is also regarded as an
external force. Propeller Di is made to move relative to B by means of a motor that exerts on Di a couple
whose torque is Mi; according to the law of action and reaction, a couple of torque −Mi is applied to B.
The motor torques are expressed as

Mi = τ6+ib̂2 + τ6+n+iĉ1 (i = 1, . . . , n) (16)

D. Equations of Motion

Equations of motion obtained using Kane’s method are given by

NvB⋆

r ·
(
FB −mB

N aB⋆
)
+ NωB

r ·
(
TB −

n∑
i=1

Mi −
NdNHB/B⋆

dt

)
(17)

+

n∑
i=1

[
Nv

D⋆
i

r ·
(
Fi −mD

N aD⋆
i

)
+ NωDi

r ·
(
Ti +Mi −

NdNHDi/D
⋆
i

dt

)]
= 0 (r = 1, . . . , 6 + 2n)

where NvB⋆

r , referred to as the rth partial velocity of B⋆ in N (Ref. [15], Sec. 2.14), is simply the vector
coefficient of ur in the right-hand side of Eq. (1). Similarly, NωB

r denotes the rth partial angular velocity of
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B in N , which is simply the vector coefficient of ur in the right-hand side of Eq. (2). The partial velocities
and partial angular velocities recorded in Table 2 are obtained by inspection of Eqs. (1), (2), (4), and (13).

It is worth noting that for r > 6 the vectors NωDi
r and Nv

D⋆
i

r are 0 when r differs from the heading in

the final two columns. For example, in connection with the first propeller i = 1; NωD1
7 = b̂2, whereas

NωD2
7 = 0, NωD3

7 = 0, etc. Kane’s method yields equations of motion in the general form [M ]{ .u} = {F},
where [M ] is a symmetric generalized inertia matrix (sometimes referred to as the mass matrix) that, in this
case, is dimensioned (6 + 2n) × (6 + 2n), the column matrix { .u} contains

.
u1, . . . ,

.
u6+2n, and the column

matrix {F} is dimensioned (6 + 2n)× 1.

Table 2. Partial velocities and partial angular velocities

r 1 2 3 4 5 6 6 + i 6 + n+ i
NvB⋆

r b̂1 b̂2 b̂3 0 0 0 0 0
NωB

r 0 0 0 b̂1 b̂2 b̂3 0 0
NωDi

r 0 0 0 b̂1 b̂2 b̂3 b̂2 ĉ1
Nv

D⋆
i

r b̂1 b̂2 b̂3 −k3,ib̂2 + k2,ib̂3 k3,ib̂1 − k1,ib̂3 −k2,ib̂1 + k1,ib̂2 −liĉ3 0

The elements of the generalized inertia matrix [M ] are denoted by Mrs (r, s = 1, . . . , 6+2n). The matrix
can be partitioned as shown in Eq. (18).

M =

MR/R MR/δ MR/ϕ

Mδ/R Mδ/δ Mδ/ϕ

Mϕ/R Mϕ/δ Mϕ/ϕ


(6+2n)×(6+2n)

(18)

Explicit expressions for the elements of the generalized inertia matrix partitions are given in Eqs. (19) to

(24) , where mT = mB + nmD. For brevity,
n∑

i=1

is replaced by Σ.

MR/R =



mT 0 0 0 mDΣk3,i −mDΣk2,i

0 mT 0 −mDΣk3,i 0 mDΣk1,i

0 0 mT mDΣk2,i −mDΣk1,i 0

0 −mDΣk3,i mDΣk2,i M44 M45 M46

mDΣk3,i 0 −mDΣk1,i M54 M55 M56

−mDΣk2,i mDΣk1,i 0 M64 M65 M66


6×6

(19)

where

M44 = I11 + IsΣcos2 δi + ItΣsin2 δi +mD(Σk23,i +Σk22,i)

M54 = I21 −mDΣk1,ik2,i

M64 = I31 + (It − Is)Σ cos δi sin δi −mDΣk1,ik3,i

M45 = I12 −mDΣk1,ik2,i

M55 = I22 + nIt +mD(Σk23,i +Σk21,i)

M65 = I32 −mDΣk2,ik3,i

M46 = I13 + (It − Is)Σ cos δi sin δi −mDΣk1,ik3,i

M56 = I23 −mDΣk2,ik3,i

M66 = I33 + IsΣsin2 δi + ItΣcos2 δi +mD(Σk21,i +Σk22,i)

where Irs
△
= b̂r · IB/B⋆

· b̂s (r, s = 1, 2, 3) denotes a central moment of inertia of B (when r = s) or a central

product of inertia of B (when r ̸= s) for lines parallel to b̂1, b̂2, and b̂3.
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MR/ϕ = Mϕ/R
T =



0 0 . . . 0

0 0 . . . 0

0 0 . . . 0

Is cos δ1 Is cos δ2 . . . Is cos δn

0 0 . . . 0

−Is sin δ1 −Is sin δ2 . . . −Is sin δn


6×n

(20)

MR/δ = Mδ/R
T =



−mDl1 sin δ1 . . . −mDln sin δn

0 . . . 0

−mDl1 cos δ1 . . . −mDln cos δn

−mDl1 cos δ1k2,1 . . . −mDln cos δnk2,n

It −mDl1(k3,1 sin δ1 − k1,1 cos δ1) . . . It −mDln(k3,n sin δn − k1,n cos δn)

mDl1k2,1 sin δ1 . . . mDlnk2,n sin δn


6×n

(21)

Mϕ/ϕ =


Is . . . 0
...

. . .
...

0 . . . Is


n×n

(22)

Mϕ/δ = Mδ/ϕ
T =


0 . . . 0
...

. . .
...

0 . . . 0


n×n

(23)

Mδ/δ =


It +mDl1

2 . . . 0
...

. . .
...

0 . . . It +mDln
2


n×n

(24)

Elements of the matrix {F}(6+2n)×1 are shown in Eqs. (25)–(32).

F1 = −mB(u5u3 − u6u2)−mDΣ [−u6+i(u5 + u6+i)li cos δi + u5λ3,i − u6λ2,i] + b̂1 · (FB +ΣFi) (25)

F2 = −mB(−u4u3 + u6u1)−mDΣ [u6+ili(u4 cos δi − u6 sin δi)− u4λ3,i + u6λ1,i] + b̂2 · (FB +ΣFi) (26)

F3 = −mB(u4u2 − u5u1)−mDΣ [u6+i(u5 + u6+i)li sin δi + u4λ2,i − u5λ1,i] + b̂3 · (FB +ΣFi) (27)

F4 = −(NωB × IB/B⋆

· NωB) · b̂1 + IsΣcos δiu6+i(u4 sin δi + u6 cos δi)

− ItΣsin δiu6+i(u4 cos δi − u6 sin δi) + IsΣsin δiu6+n+i(u5 + u6+i)

− (It − Is)Σ sin δi(u5 + u6+i)(u4 cos δi − u6 sin δi)

+mDΣk3,i [u6+ili(u4 cos δi − u6 sin δi)− u4λ3,i + u6λ1,i]

−mDΣk2,i [u6+i(u5 + u6+i)li sin δi + u4λ2,i − u5λ1,i] + b̂1 · (TB +ΣTi)

+ Σ(k2,ib̂3 − k3,ib̂2) · Fi

(28)
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F5 = −(NωB × IB/B⋆

· NωB) · b̂2 − IsΣu6+n+i(u4 sin δi + u6 cos δi)

− (Is − It)(u4 sin δi + u6 cos δi)(u4 cos δi − u6 sin δi)

−mDΣk3,i [−u6+i(u5 + u6+i)li cos δi + u5λ3,i − u6λ2,i]

+mDΣk1,i [u6+i(u5 + u6+i)li sin δi + u4λ2,i − u5λ1,i] + b̂2 · (TB +ΣTi)

+ Σ(k3,ib̂1 − k1,ib̂3) · Fi

(29)

F6 = −(NωB × IB/B⋆

· NωB) · b̂3 − IsΣsin δiu6+i(u4 sin δi + u6 cos δi)

− ItΣcos δiu6+i(u4 cos δi − u6 sin δi) + IsΣcos δiu6+n+i(u5 + u6+i)

− (It − Is)Σ cos δi(u5 + u6+i)(u4 cos δi − u6 sin δi)

+mDΣk2,i [−u6+i(u5 + u6+i)li cos δi + u5λ3,i − u6λ2,i]

−mDΣk1,i [u6+ili(u4 cos δi − u6 sin δi)− u4λ3,i + u6λ1,i] + b̂3 · (TB +ΣTi)

+ Σ(k1,ib̂2 − k2,ib̂1) · Fi

(30)

F6+i = −(u4 sin δi + u6 cos δi) [Isu6+n+i + (Is − It)(u4 cos δi − u6 sin δi)]

+mDli sin δi (u5λ3,i − u6λ2,i) +mDli cos δi (u4λ2,i − u5λ1,i) + τ6+i + b̂2 · Ti

− liĉ3 · Fi

(31)

F6+n+i = Isu6+i(u4 sin δi + u6 cos δi) + τ6+n+i + ĉ1 · Ti (32)

E. System Angular Momentum and Kinetic Energy

Let S denote the multibody system made up of B and D1, . . . , Dn. The angular momentum NHS/S⋆

in N
of S with respect to S⋆, the system mass center, is given by

NHS/S⋆

= IB/B⋆

· NωB +mBr
S⋆B⋆

× NvB⋆

+

n∑
i=1

(
IDi/D

⋆
i · NωDi +mD rS

⋆D⋆
i × NvD⋆

i

)
= IB/B⋆

· NωB +

N∑
i=1

[
IDi/D

⋆
i · NωDi +mD rS

⋆D⋆
i ×

(
NωB × rB

⋆Pi + Nω Ci × liĉ1

)]
(33)

According to the angular momentum principle, NHS/S⋆

has constant direction in N and constant magnitude
when the moment about S⋆ of external forces vanishes.

The kinetic energy K of S in N is given by

K =
1

2

[
mB

NvB⋆

· NvB⋆

+ NωB · IB/B⋆

· NωB +

n∑
i=1

(
mD

NvD⋆
i · NvD⋆

i + NωDi · IDi/D
⋆
i · NωDi

)]
(34)

Mechanical energy E is the sum of K and V , a potential energy of S in N . If K is a homogeneous quadratic
function of u1, . . . , u6+2n then E is a constant (Ref. [16], Sec. 9.2). It can be shown that K is expressed as

K =
1

2

{
mB(u1

2 + u2
2 + u3

2) +

3∑
r=1

3∑
s=1

Irsur+3us+3 +

n∑
i=1

[
mD[(u1 + k3,iu5 − k2,iu6 − li sin δiu6+i)

2

+ (u2 − k3,iu4 + k1,iu6)
2 + (u3 + k2,iu4 − k1,iu5 − li cos δiu6+i)

2]

+ Is(u4 cos δi − u6 sin δi + u6+n+i)
2 + It(u5 + u6+i)

2 + It(u4 sin δi + u6 cos δi)
2
]}

(35)

Thus, K is seen to be a homogeneous quadratic function of the motion variables. V vanishes in the absence
of external forces, external moments, and motor torques, in which case K is constant.
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III. Simulation Results

The intent of the paper is to present multibody dynamical equations of motion for a generic tilt-rotor
aircraft, perform certain checks on the validity of the equations, and contrast numerical solutions of the
equations with those obtained from the conventional approach in which the aircraft is modeled as a single
rigid body. In what follows the equations are applied to a specific notional vehicle with four rotors, such
as the one shown in Fig. 1, and solved numerically for two cases. The first case constitutes a check of the
validity of the equations and the numerical solutions. The second case involves motions of the vehicle that
are reflective of realistic flight operations. Parameters for the notional vehicle are provided in Tables 3 and
4. Inertia matrices for B and D are provided in Eqs. (36) and (37), respectively.

Table 3. System parameters

Parameter Value

mB 2176 kg

mD 118 kg

l 1 m

Table 4. Propeller locations

i L1,i L2,i L3,i

(m) (m) (m)

1 0.5 −5.5 −0.25

2 0.5 5.5 −0.25

3 −2.5 −2.5 −0.5

4 −2.5 2.5 −0.5

IB =

 74110 0 0

0 6780 0

0 0 74529

 kg-m2 (36)

ID =

 137 0 0

0 69 0

0 0 69

 kg-m2 (37)

A. Case 1: System Response to Initial Conditions

In this example the response of the multibody system to a set of initial conditions is shown. Gravity, thrust
forces produced by the propellers, and motor torques are absent. That is to say, FB , TB , Fi, Ti, and
Mi (i = 1, 2, 3, 4) are all equal to the vector 0. The values of K and NHS/S⋆

are calculated at each step
in the numerical solution of the equations of motion in order to provide confidence that the equations are
derived correctly and the numerical solution is accurate to machine precision. A numerical solution of the
equations of motion is obtained for the following values of the motion variables at t = 0: u1 = 100 m/s,
u2 = 0 m/s, u3 = 0 m/s, u4 = −2.865 deg/s, u5 = 5.73 deg/s, u6 = 1.146 deg/s, u7 = u8 = u9 = u10 = 5.73
deg/s, u11 = −u12 = −5443.5 deg/s, u13 = −u14 = 5443.5 deg/s, δi = 0 deg (i = 1, . . . , 4). Figures 2–4
show the vehicle and propeller states along with the kinetic energy of the system and the magnitude of
the system angular momentum. The three components of NHS/S⋆

are shown in Fig. 5. In the absence of
external moments, the magnitude of the system angular moment is constant and its direction is fixed in N .
For comparison, solutions obtained with the single-rigid-body approach are co-plotted and shown in blue.
In that approach, mB is adjusted to account for the mass of the propellers, and IB is adjusted to include
parallel-axis terms associated with treating the propellers as particles. (The propeller moments of inertia
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in Eq. 37 are ignored, which is why single-rigid-body values differ from the multibody values in Figs. 4 and
5.) Although the multibody system in actual flight is not likely to undergo motions depicted in Fig. 2,
the comparison nevertheless demonstrates that a single-rigid-body dynamic model fails to reflect dynamic
coupling that must be present in the physical system. In Fig. 3 it is worth noting that there are significant
departures of the gimbal angles from their initial values because there are no motor torques present.

Figure 2. Vehicle rigid body states, case 1.

Figure 3. Propeller states, case 1.
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Figure 4. System kinetic energy and magnitude of system angular momentum, case 1.

Figure 5. System angular momentum in N , case 1.

B. Case 2: System Response to Open Loop Gimbal Commands

The second example begins with the vehicle hovering and δi = 90 deg (i = 1, . . . , 4). Initial values of the
motion variables are u1 = u2 = u3 = 0 m/s, u4 = u5 = u6 = 0 deg/s, u7 = u8 = u9 = u10 = 0 deg/s,
u11 = −u12 = 18622 deg/s, and u13 = −u14 = 5433.5 deg/s. At t = 5 s an open loop command is issued

to gimbal all four nacelles forward by means of motor torques τ6+ib̂2, which results in
.
δi = −2.86 deg/s.

At t = 10 s the nacelles are commanded to move back to δi = 90 deg at a rate of
.
δi = 2.86 deg/s. In the

final 5 s the vehicle is in trimmed level flight with a constant forward speed. The thrust produced by each
propeller is taken to be equal to the product of a constant and the propeller speed

.
ϕi. At each time step

commands are issued to adjust the thrust of each propeller by applying motor torques τ6+n+iĉ1 such that
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the magnitude of the projection of the resultant thrust on to b̂3 is equal to the vehicle’s weight, and the
resultant external moment about the vehicle system mass center is zero.

Figures 6 and 7 show the vehicle and propeller states. For comparison, solutions obtained with the
single-rigid-body approach are co-plotted and shown in blue. It is apparent in the time history of u5 (pitch
rate) in the multibody results that, in keeping with the law of action and reaction, the fuselage pitches up
when the nacelles pitch down, and vice versa. The pitch attitude reaches a maximum value of 1.25 deg after
the first maneuver. This is analogous to the “tail-wags-dog” behavior of a thrust-vector controlled launch
vehicle discussed in Ref. [17]. The single-rigid-body approach does not predict the pitching motion of the
fuselage or the multibody time history of u3, and yields a different final forward speed of the fuselage as seen
in the time histories of u1. The small changes in the angular speeds of propellers 1 and 2 observed in Fig. 7
are reflective of the thrusts required to trim the vehicle at each time step.

Figure 6. Vehicle rigid body states, case 2.
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Figure 7. Propeller states, case 2.

IV. Conclusion

Kane’s method is used to derive explicit analytical dynamical equations of motion for a multibody model
of a generic tilt-rotor aircraft. Nacelles are permitted to move independently of each other, as are the rotors.
The number of equations, which is equal to the number of degrees of freedom, is therefore 6 + 2n, where
n is the number of rotors in the model. The equations are applied to a four-rotor configuration and solved
numerically for two cases, the first of which serves as a check of the validity of the equations and numerical
solutions. Results obtained with the multibody equations are compared to those produced by the traditional
single-body approach. The latter approach fails to identify important motions of the system that are made
evident when using the higher fidelity, multibody approach. A multibody model is recommended when the
mass and inertia of appendages are significant compared to those of the fuselage, or appendages are moving
at high speeds relative to the fuselage, or large motor torques are involved.
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