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JPL Two-Phase Thermal Technology Laboratory
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• Utilizing Evaporation (Boiling) and Condensation Heat Transfer

• More Efficient Comparing to Single (Liquid) Phase

o 1g of Water: Evaporation >>  500 times  >>  1oC Temperature Increases

 System can be much lighter  or  Larger heat rejection  

o Fluids stays at the constant temperature when Evaporation/Condensation happens. 

 Isothermal / Precise temperature control by controlling pressure

Primary research areas in JPL

• Two-Phase Mechanically Pumped Fluid Loop (2016-2022)

• Oscillating Heat Pipe (2017-2025)

• AM Rover Chassis with Integrated Thermal Control (2022-2024)

• Loop Heat Pipe (2023-2025)

JPL Two-Phase Thermal Technology Laboratory (2024)

Two-Phase Heat 
Transfer 
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JPL Two-Phase Thermal Technology Lineage
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FY 16

FY 17

FY 18

FY 19

FY 20

FY 21

FY 22

FY 23

FY 24

FY 2019-2021, JPL Strategic 
Initiatives
“Two-Phase Thermal Control 
Technology for Small Spacecraft 
Exploration”
PI: Eric Sunada

FY 2022-2023, JPL Topic Areas

“Smart Thermal Control 
System for Power-Efficient 
Electronics in Extreme Cold 
Environment Missions”

PI: Taku Daimaru 

FY 2019-2021, JPL 
Topic Areas

“3D Printed Actuators 
with Innovative 
Integrated Thermal 
Management”

PI: Elham Maghsoudi FY 2020-2025, 
NASA SSTP

“AMDROP: Additive 
Manufactured 
Deployable Radiator 
OHP”

NASA Partner: Taku 
Daimaru

Collaboration with 
Univs

• Cal State LA 
(PI: Jim Kuo) 

• Cal Poly SLO 
(Co-I: John Bellardo)

FY 2021-2022, NASA CIF

“Scale-Up of Thermal Runaway 
Resistant Li-ion Batteries”

PI: Scott Roberts FY 2022, JPL Strategic Initiatives

“Additively Manufactured Rover 
Chassis with Integrated Thermal 
Control for Extreme Cold 
Environments”

PI: Taku Daimaru   

FY 2016-2018, JPL Strategic 
Initiatives
“Two-Phase Thermal Control 
Technology for Small Spacecraft 
Exploration”
PI: Eric Sunada   

FY 2017, JPL Spontaneous 
Concept
“Multi-functional Oscillating 
Heat Pipe System for High-
Density Heat Management”
PI: Taku Daimaru  

FY 2019-2020, JPL Topic Areas

“Multi-functional Oscillating 
Heat Pipe System for High-
Density Heat Management”

PI: Taku Daimaru 

FY 2019-2020, JPL Topic Areas

“An Additively Manufactured 
Lithium-Ion Battery Case that 
Prevents Thermal Runaway”

PI: Ben Furst

FY 2017-18, JPL Strategic Initiatives
“Multifunctional Thermo-
Structural Elements for Small 
Spacecraft Via Additive 
Manufacturing”
PI: Timothy O'Donnell

Oscillating Heat Pipe (OHP)Two-Phase MPFL

AM Thermal

Tech Demo 
by Cubesats 
2025

FY 2022-2023, JPL 
Topic Areas

“Advancing Electric 
Propulsion Technology 
with 3D Printing 
(AdEPT3D)”

PI: Samad Firdosy

Loop Heat 
Pipe (LHP)
FY 2022-2023, JPL 
Topic Areas

“AM-LHP for 
SmallSats Swam”

PI: Scott Roberts

FY 2023-2025, 
NASA M-STAR

“CubeSat Technology 
Exploration Program 
(CubeSTEP)”

NASA Partner: 
Taku Daimaru
Scott Roberts

Collaboration with 
Univs

• Cal Poly Pomona 
(PI: Navid Nakhjiri) 
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Primary Two-Phase Thermal Technologies
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Key Words
• Two-Phase Flow: More Efficient Heat Transport

• Additive Manufacturing: Integrate Thermal Control into Structure
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Two-Phase Mechanically Pump Fluid Loop Oscillating Heat Pipes (OHPs)

• Circulate fluid by a pump, heat transport in long distance > 10m

• Evaporation in Evaporator and Condensation in Condenser

Heating CoolingVapor

Liquid

• Heat pipe using self-excited oscillation of fluid, heat transport < 1m

• Heat transport by evaporation/condensation of micro liquid film
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Two-Phase Mechanical Pump Fluid Loop
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System Architecture

⚫ Mixed Flow System

➢ Preheating / Two-Phase flow 

⚫ Separated Flow System

➢ No Preheating / Vapor Flow
System Architecture 

(Furst 2017)

Wick-Type Evaporator

⚫ Working in Separated Flow System

⚫ Phase Separation

⚫ Ability to Adjust Mass Flow Rate to Q

➢ Wick pulls liquid up as needed Wick-Type Evaporator
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Two-Phase Mechanical Pumped Fluid Loop (TRL 4~5)
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Evaporator Development
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Heat Transfer Coefficient 

Porous Material 
Development in AM

Theoretical Modeling

Heat Transfer 

Coefficient Model

Odagiri (2017) Aluminum 

Designing
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Pipe WallEvaporation Condensation

LiquidLiquid FilmVapor

Thin Liquid Film (10’s μm)

hfilm= kl/δfilm=1000000 W/m2/K

Oscillating Heat Pipe (OHP)
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Operational Principle
• Metal Pipe, Working Fluid (Liquid Slug – Vapor Plug)

• Transport heat by Self-Excited Oscillation of working fluid

• Utilizes pressure-driven, two-phase fluid flow to rapidly transfer heat 
between heat sources and heat sinks.

• Heat transferred by Phase Change in Liquid Films

Merits and Challenge
• Can handle higher Maximum Heat Input Qmax

• Thinness・Light Weight・Flat-Plate 

• No Porous Structure (Wick)

• Flexibility in Channel Arrangement

 Additive Manufacturing (AM)

• Complex Physics

 Numerical Simulation Example of Conventional OHP (JAXA)

Stainless Steel Tubing

Copper Plates 
(Heating / Cooling Sections)

Comparison of Qmax

OHP

Round HP

Flat HP
Q

m
a
x 

[W
]

Cross Section [10-5 m2]

(Miyazaki 2000)
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Additive Manufactured OHP (AMOHP) (TRL 5)
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• Material : AlSi10Mg 

• Number of Turns : 42

• Chanel Diameter : 1 mm

• Turn Radius : 1 mm

• Plate Length : 20 cm

• Plate Width : 9 cm

• Plate Thickness : 4 mm

• Collaboration with JPL Additive 
Manufacturing Center

• High Thermal Conductivity

• 7,500 W/m/K (Horizontal Heat)

• 40,000 W/m/K (Bottom Heat)

• 5-15X higher than Current State of 
the Art (K-core)
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OHP Numerical Simulation Model
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100 W Time = 30 sec
Steady-state
1.0 x speed 

Change in temperature distribution 

Change in liquid-vapor distribution

• High precision numerical model 
based on Two-Phase Physics

▪ Movement of Liquid/Vapor

▪ Boiling, Liquid Film Evaporation

▪ Heat Transfer in Structure

• Being used as OHP design tool
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Applications of AMOHPs in JPL
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Actuator Thermal Control
For Planetary Sampling

Deployable Radiator for 
CubeSat (AMDROP)
- NASA SSTP CSLA/Cal Poly SLO/JPL

• AMDROP allows high power 
instrumentation/computation in 
CubeSats by enabling 100W class 
heat removal

High Heat Dissipation 
Electronics 

• Multi-Functional OHP system (Thermal and Structural)
• Enables more powerful operation of high-power electronics

• More efficient worming-up in cold 
environment

• Enables high-power heat dissipation 
during actuator operation

Li-Ion Battery Case

• Thermal Management 
of entire Battery Unit

• Preventing Thermal 
Run-away which 
generate high heat-
density dissipation

Thermal Strap for Chip (CIE)

3U CubeSat
Dr. Scott Roberts
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OHP Performance Prediction Model 
(Collaboration with University of Michigan)
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Prof. Massoud Kaviany
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OHP Channel Geometry
(Collaboration with University of Michigan)
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Prof. Massoud Kaviany
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Square channel is low-performing at lower heat, 
but slightly higher at high heat

(Experiment)

• More Liquid Mass -> Higher Pressure Difference
• Thinner Liquid Film Section, Larger Surface Area
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OHP in Various Material (All 3D Printed)
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Michael Cox Tomas Wexler
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Aluminum (AlSiMg) Titanium Hiperco 60

• Working Fluid: R134a
• 1mm Diameter Channel
• Operation Range

-10 ~ 60C
• Material k: 180 W/m/K

• Working Fluid: R134a
• 1mm Diameter Channel
• Operation Range

-10 ~ 60C
• Material k: 6.7 W/m/K

• Working Fluid: Water
• 2mm Diameter Channel
• Operation Range

25 ~ 300C
• Material k: 30 W/m/K
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Temperature Controllable OHP Development

14

OHP (Aluminum) Reservoir

Heater (Temperature Control)

VCOHP
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(Original Goal: 500, Needs to 

reduce off conductance)
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between  full OHP operation 
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AM-VCOHP Development 
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Cooling 

section

Heating 

section

Heater for 

temperature 

Control

Cold-biased 

Reservoir

VCOHP: Successfully Controlling Temperature 

in Heating Section 

34 ON/OFF Ratio

VCOHP OFF in Non-Op Survival 

mode  (Low Heat Input)

VCOHP ON in Op mode  

(High Heat Input)
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Additive Manufacturing Rover Chassis 
with Topology Optimization and Integrated Two-Phase Thermal Control
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Concept of AM Rover Chassis

Mechanical and Thermal Topology 
Optimization

Thermal Simulation

Integrated Two-Phase 
Heat Switch

OHP Heat Switch Design

Vacuum Insulation Coupon

Oscillating Heat Pipe’s mini 
channels are integrated

Benefits compared to SOP/SOA:

• For extremely cold environment missions

✓ Lunar Surface

✓ Mars Polar Region

✓ Ocean-Worlds

• AM two-phase heat switch (THS) enables high heat rejection

• AM structural vacuum insulation (SVI) reduces heat loss

• Integrated AM thermal/structural design reduces mass and heat loss
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OHP Heat Switch
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Cooling Block

Heater

Heat Flow

Evaporator

Condenser

Internal Channel Design
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OHP Heat Switch
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Successful Demonstration
• Stable operation over 3.5 hrs and 20hrs
• ON Conductance: 10.4 W/K (Goal 10W/K), Ti-OHP Thermal Conductivity is ~30472 W/m/K  (vs 16 W/m/K, Titanium)

• OFF Conductance: 0.0029 W/K (Goal 0.001 W/K)

Heater

Evaporator

Condenser

5W
10W

15W

20W

30W Heater (0.1W)

Evaporator

Condenser

OHP shut off

0.0029 [W/K]

ON OFF



Thank you!

Two-Phase Thermal Technology Laboratory 
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