CEA2022: A Modernization of NASA Glenn’s Software
CEA (Chemical Equilibrium with Applications)

Mark Leader

Thomas Lavelle, Xiao-yen Wang, Kevin Dickens, Michael McTague
NASA Glenn Research Center

Jeffrey Hill
NASA Ames Research Center

Thermal & Fluids Analysis Workshop 2024
August 29, 2024

This manuscript is a work of the United States Government authored as part of the official duties of employee(s) of the National Aeronautics and Space
Administration. No copyright is claimed in the United States under Title 17, U.S. Code. All other rights are reserved by the United States Government. Any
publisher accepting this manuscript for publication acknowledges that the United States Government retains a non-exclusive, irrevocable, worldwide license to
prepare derivative works, publish, or reproduce the published form of this manuscript, or allow others to do so, for United States government purposes.

What is CEA?

Chemical Equilibrium with Applications

CEAZ2: current version of legacy code (released in 2002)

* robust chemical equilibrium solver with numerous applications
* Turbojet engines, rocket engines, shock wave and detonation problems
* Used widely in government, industry, and academia

* Culmination of 50+ years of development at NASA GRC

CEA2022: modernized CEA, releasing this year”

* backwards-compatible, consistent re-write

5/1/24 2

What can CEA do?

Chemical equilibrium solver Rocket solver

* Need two fixed states: temperature & pressure (tp), * Infinite-area combustor (IAC) or finite-area combustor
enthalpy & pressure (hp), entropy & pressure (sp), (FAC)
temperature & volume (tv), energy & volume (uv), * Solves properties in chamber, throat, and exit
entropy & volume (sv) » Exit conditions specified by pressure or area ratios

e Supports over 2000 possible products, and 62 * Computes pressure ratio/area ratio, Mach, coefficient
additional reactants of thrust, specific impulse, and vacuum specific impulse

* Assumes ideal gas behavior; supports condensed
species, but assumes they take negligible volume

e Option to include ionic products

* Transport properties optionally computed * Solves conditions in a shock tube for reflected and

* Negative reactants* incident shocks
« Inert reactants* (approximation for incomplete e Uses initial Mach number or incident shock velocity

Shock solver

combustion)
* Derivatives for optimization* Detonation solver

* Solves Chapman-Jouguet detonation parameters

5/1/24 3
*new feature

Why are we doing this update?

e Modernization: Rewrite CEA in a modern language using modern software development practices
* Enhancements: Add capability to the tool based on feedback solicited from the CEA user-community
* Legacy: Develop new NASA engineers as experts in CEA to retain extensive knowledge at GRC

Code Modernization

* Modern programming
language (Fortran 2008,
object-oriented)

* Version-control using git

e Software development
using continuous testing

* Cross-platform build
support (CMake)

5/1/24

Run cases in parallel (thread safe solves) .
Thermodynamic and transport database

updates

Allow for negative reactants (e.g. water .
precipitating from the flow)

Analytic derivatives to enable gradient-based .

optimization

Make CEA a reusable library:
add APIs for multiple
programming languages
Python, Matlab, Excel,
Fortran, C, C++

Support flow-solver
integration (CFD)

Outline

* Methodology: how CEA works, and how to use 1t well

* Interfaces: how to interact with CEA

* Validation examples: comparison of CEA2022 results against CEA2
* Conclusion

Equilibrium Problem

Equilibrium Problem Results

Compute equilibrium * Temperature, T
. . Total moles, n
chemical composition,

* Species
thermodynamic state concentrations, n;

Equilibrium Problem

Problem Type
State Values
HP, TP, SP, UV, TV, or SV
e ValueofH,T,S, orU

* Value of pressure or
specific volume (or density)

_ Results
Equilibrium Problem
Reactants Compute equilibrium * Temperature, T
u uilibriu 5.
e List of reactant names — chemical composition, ;’otal.moles, "
: . ecies
* Optional (but useful): thermodynamic state > _—
reactant temperatures Selatdsmsehileins, ity
Reactant Weights

* Array of weight fractions
* Or: mole fractions, oxidant-to-fuel ratio,

equivalence ratio (weight-ratio or valence), : —
fuel-to-air ratio, or % fuel by weight e If nojc provided, CEA will find the set of
possible products from the reactants

* The user may “omit” species

Products (Optional)

Equilibrium Problem Example

Problem Type

State Values

o HP Results
H° from reactants . T=3181.23 K
P=1atm e n =0.0531 kg-mol/kg
(H: 3.5x 1073)
. -3
Reactants HZ'O 2(2) * ig ;
_ H,O0: .0x 10"
—» Equilibrium Problem ——» 2
H,, O, @ 2,000 K H,0,: 2.2x1077
HO,: 6.64 x 10°°
. * nj; =10: 5.2x 1073 ¢
Reactant Weights 0,: 1.24 x 1072
o/f ratio = 15.87336 03 1.21x107°
OH: 8.75 x 1073
Products (Optional) ALk (L0
\H,0(cr):0.0 J

H, H,, H,0, H,0,, HO,, O, O,,
031 OH; HZO(L)I Hzo(cr) 8

How do we solve the equilibrium problem?

Basic assumption: PV = ngRT

NS
Equilibrium is based on minimization of Gibbs’ energy: g = Z T
J
But, the equilibrium solution has to end with the same amount of each
element that we stated with:
NS
Zaijnj —b;=0,7=1,..., NE

(
J 9

How do we solve the equilibrium problem?

Constrained minimization problem - form a Lagrangian:

Expand the previous equation to form a nonlinear matrix system of equations:
R(x,u) = A(x,u)u — f(x,u) =0

Use a Newton-method solver with a damped update to converge the solution

How do we solve the equilibrium problem?

Solution variables:

. . T
* Species concentrations: N = [Ny, ..., N,

* Total mixture moles: n

* Mixture temperature: T

An initial guess is required the the iterative solution procedure:

T

0.1 0.1

= |—,...,—| kg-mol/k

n [NS, ,NS] g-mol/kg
n = 0.1 kg-mol /kg

T'= 3800 K

11

[teration Procedure

[Use a Newton-method solver with a damped update to converge the solution]

Solution update variables:

1) Change in log of gas species concentrations A ln(nj)7 7=1,....,.NG

2) Change in condensed species concentrations Anj,] = NG + 17 Cee NS
3) Change in log-moles JAN ln(n)

4) Change in log-temperature Typically: Damped update
- ln(T) factor A 1s initially < 1 for early

iterations, and equal to 1 when
Example update: Damped update factor the solution i1s close to

k+1 __ k . - convergence
In(n;)"" =1In(n;)" + A(Aln(n,)), 7=1,...,NG

12

Iteration Procedure

U

/N ote: internally, In(n;) and n; are stored separately

Seems redundant, but: e
Threshold 1s applied for species with ln(nj) <In(1078%) — n; =0
ln(nj) 1s continually updated, so that n; can come in and out of the
solution without loss of information from previous

Default threshold of In(107%) = —18.420681 can be controlled using the

’trace” variable

4

Convergence Criteria

ﬂnverge 1s based on the relative size of the update variables
* If updates are sufficiently small for all variables, we have reached an
equilibrium point, and the residual equation 1s satisfied
 Test for each of:
* (Gas species concentrations: nj, j=1,..,NG
 Condensed species concentrations: nj, j= NG +1,.. NS

 Total moles: n

* Temperature: T

 Element balance: b;, i =1,...,NE
* Entropy: s

K° Modified Lagrange multipliers: ©;, i,..., NE /

Next: special cases

* Condensed species

* lonized species

* Negative reactant amounts
* |Inert species

15

Condensed Species

|

Inclusion of condensed species violates the ideal gas assumption]

* This assumption 1s okay as long as condensed species only take up a negligible volume

Solution procedure:

1.
2.
3.
4

5.

Start with no condensed species in the initial guess
Compute equilibrium with only gas phase species
After convergence, test if adding any condensed species lowers the Gibbs energy

If any meet the criteria, add the species that lowers the Gibbs energy the most, and
converge the system again

Repeat 3 and 4 until final convergence

+ Additional considerations for handling phase change, or multiple phases of the same species

Ionized Species

[CEA supports the use of ionized species]

This adds an additional constraint to the problem, such that the charge-
balance equation is satisfied:

NG
E Qe;Tlj =0
j=1 \

Charge-balance for species j
17

Negative Reactant Amounts

[CEA2022 allows reactants to be specified with negative amounts]

Example: water precipitating from a flow

This affects:
1. The element-balance constraint

2. The fixed-value of H°, S°, or U° (in cases where the reactant mixture is used
to compute those values)

* This is a non-equilibrium analysis, so be extra careful interpreting results
when using this feature

18

Inert Species

[CEA2022 allows reactants to be specified as inert]

InertCl10H8, naph InertCH4

* This allows the user to specify a fixed- Inert0o2 InertH2 (L)
guantity of a species to persist in the InertJP-5 InertJet-A(g)
product mixture InertC2H4 InertH

* Example: retain some amount of fuel IL(SEE LT LREEEJE=L0 (L)
to model incomplete combustion InertJet-A (L) InertO2 (L)

. I tH2 I tRP-1

* Only supported for certain e e - O

hydrOcarbOnS InertJP- g Inert

InertJP-4

* This is a non-equilibrium analysis, so be extra careful interpreting results
when using this feature .

Thermodynamic Properties

C, H
Compute ? o and — usmg piecewise polynomial curve fit data
Cp 2 3 4
Example: E =T ?+aT P+ a3+ a,T+asT? + agT? + a7 T

2,012 product species currently supported, with an additional 62 reactants

For gaseous species, curve fits are done in the intervals:

* [200, 600] K

e [600, 1000] K

e [1000, 6000] K

e [6000, 20000] K
Condensed species are unique to each species 2

Thermodynamic Properties

ew species added for CEAZOZZ\

Ammonium DiNitramide (ADN)
LMP-103S

HydroxylAmmonium Nitrate (HAN)
AF-M315E, a.k.a., ASCENT
n-Butanol

Biodiesel /

Green propellants | -

e

Sustainable Aviation Fuel (SAF)

S

21

Thermodynamic Properties
oh
= (57),
h = 2 Tl]h]
(a_T)p - Z("f T aT hf)

| | This term is
This comes from =, included in the
CEA curve fit data / 7% y Jacobian matrix

"frozen” heat capacity

22

Transport Properties

[CEA can optionally compute mixture transport properties]

Uses curve fits with least-squares coefficients to compute:

* Viscosity, | B C
iscosity, 77 nmn AT - O
* Thermal conductivity, A In A T T

* Transport properties are only computed for gaseous species
* Abinary interaction parameter 7;; is included for some pairs of species

* Prandtl number is also computed

23

Frozen vs. Equilibrium Transport Properties %@

Thermal conductivity, specific heat, and Prandtl number each have “frozen” and
“reaction” contributions

The frozen (“fr”) and reaction (“re”) terms sum to equilibrium (“eq”) value:

)\eq — >\fr =+)\re

I

N

J

24

Rocket Analysis

CEA can analyze rocket performance

 (Can assume either an infinite-area combustor (IAC) or a finite-area combustor (FAC)

* Converge each station in order of:
combustor, throat, and exit

e Equilibrium module is called at each
station by default, unless “frozen” mode
is used

* Frozen analysis: compute equilibrium
mixture up until the frozen station; after
that, the composition is fixed

Inputs:

Reactants
Chamber pressure

Exit parameters:

e Chamber pressure to exit pressure ratio,
Fe/Fe

* Or, exit area to throat area ratio, A,/A;

FAC:

* Contraction ratio, A./A;
* Or, mass flow rate per chamber area,
m/A, 25

Shock Problems

[CEA can solve shock tube problems for both incident and reflected shocks]

Inputs:

* Reactants
* Un-shocked pressure and temperature

* Incident shock velocity, or Mach number

27

Detonation Problems

[CEA can compute parameters for Chapman-Jouguet detonation problems]

Inputs:

* Reactants

* Initial temperature and pressure

* Detonation velocity, or Mach number

28

Software Development Summary

Version control:
» Using git distributed version control system
* NASA GitHub for automated testing, collaboration, issue tracking, release management

Language: Fortran 2008 (compatible subset)
* Performance: native execution, performant multi-dimensional arrays, highly optimized compilers
* Legacy CEA Compatibility: simplifies migration, test, modernization of legacy algorithms

* Software Architecture: object-oriented programming, polymorphism
* Widely available: GNU v5+ (2015), Intel 16.0+ (2015), PGI/NVIDIA 19.4+ (2019)

Testing:
* Concurrent development of unit tests exercising software at subroutine level
* Run every time the code is compiled to make sure no bugs or unexpected behavior is introduced
* Enables rapid verification of builds on new platform/compilers; rapid code refactoring

30

Software Development Summary

Thread-safe solves:
 All solve functions are thread-safe to allow running problems in parallel

Subroutine interface:

 CEA2022 emphasizes the use of a subroutine interface, whereas CEA2 was
restricted to text file input/output

* Allows CEA2022 to be called more easily by other programs, for example,
integration within a CFD solver

* Serves as the base API to allow interfaces in other programming languages

31

Software Interface Approach

e Support calling CEA from other software via “subroutine

interface” or “application programming interface” (API)
 Want this support across a range of low-level
(Fortran/C/C++) and interpreted (Python, MatLab)
languages

» Strategy: “Hour Glass” design pattern, where standard C is
used to define an APl accessible in multiple languages.
* Fortran 2003/2008 provides facilities for portable C interop
» All target languages have ability to load/call C libraries

The legacy “.inp” is still an option!

Fortran

|

N

Excel

Python

|

Matlab

32

C Interface

* Designed C-language API as foundation for multi-
language support

Supports concurrent multi-solver, multi-solution use

cases (CFD solvers)
Supports shared-memory parallel solves

* C API core uses Fortran 2008 interop features

Demonstrated CEA object allocation / use /
deallocation from C

Demonstrated calling CEA library routines from C
Demonstrated passing character strings, arrays, etc. C
< Fortran

Fortran

|

C

N

Excel

Python

|

Matlab

33

Python Interface

* Python wraps the C level interface using
Cython

* Python interface builds using CMake

Fortran
C
Excel Python

|

Matlab

34

Python Interface

import numpy as np
import _cea as cea

Fortran

R = 8314.51

po = 1.01325
TO = 2000.0

reac = cea.Mixture([b"H2", b"02"])
prod = cea.Mixture([b"H", b"H2", b"H20", b"0", b"02", b"OH"])

solver = cea.Solver(prod, reac)

weigﬁté = re;c.ﬁoles_to_weigﬁts(np.array(1:0, 1.01)) ID)(CKEl I)B/tll()Il

h® = reac.calc_property(cea.ENTHALPY, weights, T@)/R

solution = solver.solve(cea.HP, p@, h@, weights)

print("T = ", solution.T) PVIEltlflt)

print("nj = ", solution.nj)
print(*nj = ", solution.1ln_nj)
print(*n = ", solution.n) 35
print@”converged?”, solution.convergedm

Python Interface

import numpy as np
import _cea as cea

Fortran

R = 8314.51

Thermo states
p0® = 1.01325 # Fixed-pressure state (bar)
TO = 2000.0 # Initial reactant

(cea) mleader@PGRLALO224020072 samples % python h2_o02.py
Mixtures T = 3458.6924975345105 (j
reac = cea.Mixture([b"H2", nj = [-9.03916123 -7.76751404 -3.6087491 -7.49212988 -4.28695461 -5.6098743 1]
prod = cea.Mixture([b“H", b} nj = [0.00011867 0.00042326 0.02708571 0.00055745 0.01374673 0.00366153]

= 0.045593351261682034

Solver converged? True
solver = cea.Solver(prod, ree

Get the weights for one mole of each species

weights = reac.moles_to_weights(np.array([1.0, 1.0]1)) }))ft}l()ll

Get the fixed-enthalpy

h® = reac.calc_property(cea.ENTHALPY, weights, T0)/R

Equilibrium solve
solution = solver.solve(cea.HP, p@, h@, weights)

print("T = ", solution.T) PV{E%tlE%t)

print("nj = ", solution.nj)

print("nj = ", solution.ln_nj)
print('n = ", solution.n) 36
printl"converged?“, solution.convergedl

Matlab Interface

* First: linking with “C” library, but the Matlab
supported compilers and capability were more
limited than I expected

* Solution: call the CEA Python library from Matlab
instead

e Matlab calls Python directly — easier build, and
only need to support/maintain one interface
(Python)

* Matlab’s Python interface does not support creating
object instances using instances of other objects
* This breaks the expected CEA API, down to the Fortran

level, so we create a separate CEA-Python wrapper just
for Matlab

* E.g. “import cea matlab”, not “import cea”

Fortran

|

C

N

Excel

Python

|

Matlab

37

Ei Editor - /Users/mleader/git/cea/source/bind/matlab/test/examplel.m @) Workspace
J(examplel.m 1 h2_o2.m J +1 Name & Value
1 clear; clc;) H atm_to_bar 1.0133
2 cea 1x1 module
3 cea = py.importlib.import_module('_cea'); [©| chem_eq_ratios 1xI ndarray
4 fuel_moles 1x1 ndarray
5 atm_to_bar = 1.01325; |@| oxidant_moles 1xI ndarray
6 % Species pressures 1x1 ndarray
7 reac_names = py.list({'H2', 'Air'}); |&@| prod_names Ix20 list
8 prod_names = py.list({'Ar’, 'c', 'Co', 'C02', 'H', ... [©] reac_names Ix2 list
9 'H2', 'H20', 'HNO', 'HO2', 'HNO2', ... soIn Ix1 Solution
10 'HNO3', 'N', 'NH', 'NO', 'N2', ...| |&@| temperatures 1x1 ndarray
11 'N203', '0', '02', 'OH', '03'});
12
13 % Thermo states
14 pressures = py.numpy.array(atm_to_barx[1.0, 0.1, 0.01]);
15 temperatures = py.numpy.array([3000.0, 2000.0]);
16
17 % Mixture states
18 fuel_moles = py.numpy.array([1.0, 0.0]);
19 oxidant_moles = py.numpy.array([0.0, 1.0]1);
20 chem_eq_ratios = py.numpy.array([1.0, 1.5]);
21
22 % Solve the equilibrium problem
23 soln = cea.eq_solve(cea.HP, 396.5543, 1.01325, reac_names, py.numpy.array([2.0159, 31.999]));
Command Window)
species = ['H2', 'Air']
species = ['H2', 'Air']
fx >>

38

Equilibrium Problem Validation Example

From RP-1311 Example 4 (UV problem)

« p=14.428 kg/m3

* u/R = —45.1343 (kg-mol)(K)/kg

e off=17

e Oxidant: Air @ 700 K

e Fuel: 60% C,Hg(L), 40% CgHqo(L) @ 298.15 K

_ CEA2 CEA2022 Relative Error (%)

2418.5382574474097 2418.5384473019085 7.85 x 107°
ln(nj): (HCOOH)2 -52.374890133250204 -52.374888695317857 2.75 x 1078
In(n;): Ar -8.0940265640663025 -8.0940265628475903 1.51 x 107°
In(n;): C -42.957051147438705 -42.957047510708030 8.47 x 107°

In(n;): CO -9.7591561204275976 -9.7591554029655168 7.35 x 107°

39

Rocket Problem Validation Example

From RP-1311 Example 8 (IAC problem)
« Oxidant: O,(L) @ 90.17 K

* Fuel: Hy(L) @ 20.27 K
 o/f=5.55157

Combustor 3383.8446259451043 3383.8446259451043
Combustor 1n(nj): H, -3.7643107135196541 -3.7643107135196558 4.72 x 10~14
Throat T 3185.6731730807096 3185.6335035883212 1.25 x 1073
Throat In(n): H, -3.7758918668469459 -3.7758938050310880 5.13 X 105
Exit (py/p.) T 2567.3401804441942 2567.3411236822476 3.67 X 1075

Exit (pi/pe) In(n;): H, -3.7880413204534467 -3.7880413298752891 2.49 x 1077

40

Shock Problem Validation Example

From RP-1311 Example 7

e 0.05 moles H, and O, + 0.9 moles Ar @ 300 K
e P=0.1bar

* u;=1,400m/s

Incident T (K) 2268.1839840465000 2268.4047056277263 9.30 x 1075
Incident P (bar) 1.9235852279853596 1.9237641552369096 9.73 x 1075
Incident In(n;): HO, -17.223079678243373 -17.222396748742256 3.97 x 107>
Incident In(n): OH -9.6259080229365601 -9.6251244117341326 8.14 X 1075
Reflected T (K) 3253.2881222920269 3254.3115063133464 3.15 x 1074
Reflected P (bar) 6.8857588009600743 6.8863847357399406 9.09 x 1075
Reflected In(n;): HO, -15.149034932828400 -15.148447374699135 3.88 X 107>
Reflected In(n;): OH -7.6811535944113283 -7.6801166285479265 1.35 x 1074

41

Detonation Problem Validation Example

From RP-1311 Example 6

e Oxidant: O, @ 298.15 K
* Fuel: H, @ 298.15 K

e r=1

- |CEA2 CEA2022 Relative Error (%)

T (K) 3674.2808311051022 3674.2778635982045 8.08 x 10~7
P (bar) 18.768446693571065 18.768459579609036 6.87 x 1077
In(n,): H, -4.4936123449492360 -4.4936124180425319 1.63 x 1078
In(n;): H,0, -13.491896007609208 -13.491896098472500 6.73 X 10~°

In(n;): OH -4.6300836293723897 -4.6300839021590434 5.89 x 1078

42

Conclusion

* Modernization of CEA: replicate existing capability of CEA2, with
added features and improved interface options

* Added species to thermodynamic database for green propellants and
sustainable aviation fuels

* Supports thread-safe solves to allow runs in parallel

* Added support for inert, and negative reactants

* Results have been validated against CEA?2 for each application type

* Sustain CEA with ongoing improvement and fixes based on user-feedback

* Plan 1s to release open-source soon, targeting by the end of the
calendar year

Future Work

Immediate priorities:

* Finish Excel interface

* Finish analytic derivatives

* Improve testing
* Integration tests
 Add tests for each interface

Near term:

* Add useful outputs for non-
equilibrium sanity checks

* Example: % volume occupied by
condensed species

* Integration with other tools, e.g.
NPSS

* Algorithm improvements
* Improved initial guess

44

Acknowledgements

* Thanks to NESC for funding this work
* Thanks to HTP, RVLT, and TTT programs for their support

mark.leader@nasa.gov

45

Thermodynamic Properties

HO f CodT

> / v gy

C

fp — alT_2 -+ CLQT_l —+ a3 + a4T -+ a5T2 -+ CL6T3 -+ CL7T4
He° T T? T3 T4
RT:—alT + a1 1lnT—|—a3—|—a4§+a5?—|—a6Z—1—a7?—|—%
go T 2 T2 T3 T4

& — _alT — a7} +a31nT+a4T+a57 +a6§ +CL7I + ag

46

