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Training Overview

Day 1: Introduction to ASSET's core functionality
Vector Functions - "Basic building blocks used in nearly all ASSET operations"
ODEs and Integrators - "Defining solution spaces and integrating the dynamics"
Phases - "Setting up optimization problems"
 Optimal Control Problems (OCPs) - "Configuring complex, multi-phase optimization problems"

Day 2: Using the "Astro Library" for quick astrodynamics modeling
Two-Body Problem Example
 N-Body Problem Example
CR3BP Example
 Ephemeris Pulsing Rotating Example
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Astro Library
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Where is Astro?

 Astro comes bundles with the ASSET install
 Can be found in “Site-Packages” of wherever your ASSET virtual environment is



While the core of ASSET is the underlying C++ tools and their python bindings, ASSET ships with additional  
functions for user convenience 

Astro is useful to quickly get models up and running, using prebuild astrodynamics frames written in Vector 
Function syntax

Existing tools currently include:
Astrodynamical constants (gravitational parameters, units, etc.)
Simplified models (two-body, CR3BP, etc.)
Ephemeris models (N-body, Ephemeris Rotating, etc.)
Engines/Accelerators (low-thrust engine, solar sail, etc.)
Data handlers (spice wrapper, date conversion, etc.)
More to come!
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What is the Astro Library?
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Astro Model Types

 In general, models in Astro can be defined as either “simplified” or “ephemeris”
 While “simplified” models can stand along, “ephemeris” models need a “frame” defined
“Frames” use JPL SPICE kernels on the backend to handle planetary data

Model 
Type?

Model 
Created

“Simplified”

“Ephemeris” Frame 
Created

Integrators, 
phases, etc.
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Model Instantiation

 To conduct proper numerical optimization, all Astro models are nondimensionalized

 Astro models are instantiated with dimensional terms, and the nondimensionalization occurs 
behind the scenes
 This is handled via “characteristic” terms for each unit type
 An instantiated model class has lstar, vstar, and astar defined as properties (length, velocity, accel.)
 To nondimensionalize a term, divide it by the appropriate “characteristic” value (i.e., 100 meters / lstar)
 Redimensionalization is as simple as multiplying an ND term by the “characteristic” value

Using the Astro Constants library helps ensure all models and dimensionalization terms use the 
same underlying units
 All units in Astro.Constants are given in meters, kg, and seconds
 For example, Astro.Constants.day = 86400.0 (seconds)
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Astro Utility Functions

 On top of the models and frames provided in Astro, there are a wide range of utility functions 
to make analysis easier and more consistent

These utilities include:
 Constants
 SPICE data management
 Date conversion tools
 Plotting functions

Many of these will be demonstrated in the following examples



Astro Demo 1: 
Two-Body Model
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Model Definition

 The simplest example of orbital mechanics is the two-body equations of motion
 Consists of an arbitrary cartesian set of right-handed basis vectors
 Utilizes point mass acceleration, with the attractive body at the origin

 Model doesn’t require a frame, only needs gravitational parameter and lstar

�𝑥𝑥
�𝑦𝑦

𝑧̂𝑧
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Demo Overview

 This first demo will show how to instantiate and use the TwoBody model in Astro, along with 
how to model and optimize impulsive delta Vs

 we will use a Moon centric model, with a predefined initial condition of a suborbital trajectory

 A delta V will be applied and optimized to attain a desired semi-major axis value as part of a 
guided example

Finally, you will have a chance to try and optimize a circularizing burn on your own!
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Demo Imports
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Model Setup
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Cartesian to Keplerian Elements Vector Function

 Function definition provided in 
the “UserProvidedInputs.txt” file

 This definition is only meant to 
handle elliptical orbit states!
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Set Up Initial Guess (Suborbital)

 Initial Condition provided in 
“UserProvidedInputs.txt”
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Set Up Event Detection Integration
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Set Up First Burn Initial Guess
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Initial Guess 2 Should Provide:
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Define Semi-Major Axis Constraint
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Configure Phases and OCP

Used later for link 
constraints
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Configure Phases and OCP (cont.)



Your Turn!
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Next Challenge:
 Using what is written so far in demo 1, let’s add another phase that performs an optimized 
circularization burn

This new phase can be added to the end of the orbit raise burn, and both burns can be 
optimized together in a single ocp
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A Few Hints:

 Your new trajectory arc will need the following:
 An initial condition (recall how we added a delta V guess for ig2)
 An initial guess -> integrate the initial condition
 A “phase” added to the optimal control problem, along with proper constraints
 Speaking of constraints, instead of the sma constraint you will need to define and use an eccentricity constraint

 The ocp has already solved 2 of the 3 trajectories in it, so you can use ocp.optimize() instead of 
solve_optimize()

 To avoid numerical issues, constrain final eccentricity to be 0.0001, not 0!

 I integrated/constrained the new phase to be 3 hours to show a full orbit revolution, but this is arbitrary



Exercise 1 Answer Key
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Define Eccentricity Constraint
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Initial Guess and Phase Creation
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Add To OCP and Optimize
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Final Solution
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Save Traj Data



Astro Demo 2:
N-Body Frame
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New Imports

 Provide additional imports as needed for N-Body Modeling
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Model Definition

 The N-Body frame is a planet centric ephemeris model 
 Leverages JPL SPICE kernels for ephemerides and frame definition
 Defaults to point mass acceleration, with J2 gravity as an option

 This Model requires a Frame

�𝑥𝑥
�𝑦𝑦

𝑧̂𝑧

Model: an instantiated ASSET ODE that exposes 
ASSET Integrators and Phases
(The last example used the two-body model)

Frame: a utility class that contains important 
methods and properties that a Model can use
(The N-Body Frame holds the SPICE ephemerides)
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Set Constants and Furnish the SPICE Kernels

*The “kernels” folder provided needs to 
be added to your working directory
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Define the N-Body Frame
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Reuse Functions from Demo 1

 In this new script, copy over the utility vector functions we wrote for demo 1

This includes:
 Cart2Kep
 SemiMajorConstraint
 EccConstraint
 DVCost
 MoonDist

 Functions you use often can of course be saved into a utility function script or python module 
to be imported into projects
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Next Challenge

 Now try to create the same 3 phase optimal control problem from Demo 1, this time using the 
N-Body Model we just defined

Hints:
 Remember that an ASSET “phase” is spawned from an ASSET Model
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Final Solution



Astro Demo 3:
CR3BP Frame
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Model Definition

 The Circular Restricted 3 Body Problem (CR3BP) has already been addressed in Day 1

 In the Astro Library, CR3BP is a simplified Model that doesn’t require a Frame
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Imports
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Configure CR3BP Model and Define Constants
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Create a Low-Thrust Engine and Low-Thrust CR3BP Model

 The LowThrustAcc model from Astro.Extensions.ThrusterModels accepts either a 
nondimensional or a dimensional acceleration value as input 
 The other input should be set as “False”
 The model instantiation is of the form “LowThrustAcc(<Nondimensional Acc>, <Dimensional Acc>)”
 We use a dimensional 0.005 (m/s^2) for this example

 The “cr3bp_lt” Model is entirely independent of the base “cr3bp” Model already instantiated
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Make a Prograde Control Law and Low-Thrust Integrator
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Generate Initial Guesses

*The initial condition values are included in 
“ASSET_Training_Files/Astro Library (Day 2)/UserProvidedInputs.txt”
Starting on line 72
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Create Low-Thrust Arc Initial Guess and Plot



ASRL 47

Create Interpolation Table for Halo Orbit Rendezvous



ASRL 48

Make a Rendezvous Constraint Vector Function

 Python inputs include the “InterpTable1D” for the target, and ASSET Arguments for “states” 
(position and velocity) and a “rendezvous time” that is used for InterpTable1D lookup
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Construct Phases
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Construct Phases
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Construct Phases
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Construct Phases
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Next Challenge

 Using these phases, construct an Optimal Control Problem for a low-thrust transfer that starts 
on the LLO and arrives on the target halo, minimizing low-thrust burn time

Hints:
 During impulsive maneuvers we expected discontinuity in velocity between phases, is that still true in 

this case?
 Is minimizing low-thrust burn time going to be handled as a link objective (between two phases) or 

handled directly by one of the phases?
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Solution
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Plot and Save Final Solution



Astro Demo 4:
EPPR Frame
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Model Definition

 The Ephemeris Pulsing Rotating (EPPR) Frame is an ephemeris Model that utilizes CR3BP basis vectors

 Due to leveraging SPICE ephemerides, the EPPR Model requires a Frame
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Model Definition (cont.)
 EPPR is dynamically scaled to maintain unity distance between P1 and P2

 The Frame dynamically computes ephemeris perturbations and frame pulsing

 EPPR is ONLY defined for fixed, user-defined epoch ranges established at Frame creation
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Imports
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Read CR3BP Trajectory Data
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Configure the Frame and Models
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Next Challenge

 With the Model defined and CR3BP initial guess imported, create the optimized transfer from 
LLO to the target halo in the EPPR Model

Hints:
 Remember, instantiated Models are used to create ASSET “phases”
 “Phases” need initial guesses, which we have already created for this example
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Solution
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Results



Thank you!
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Contact Info:
Aaron Houin – ajhouin@crimson.ua.edu
Professor Sood – rsood@eng.ua.edu
ASSET Documentation: https://alabamaasrl.github.io/asset_asrl/

mailto:ajhouin@crimson.ua.edu
mailto:rsood@eng.ua.edu
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