
ASTRODYNAMICS AND SPACE RESEARCH LABORATORY 1

Astrodynamics Software and Science
Enabling Toolkit (ASSET) Training

NESC Training – Flight Mechanics Tech. Discipline Team

Astrodynamics and Space Research Laboratory

Presenter: Aaron Houin
PI: Dr. Rohan Sood

The University of Alabama, Tuscaloosa AL

ASRL 2

Training Overview

Day 1: Introduction to ASSET's core functionality
Vector Functions - "Basic building blocks used in nearly all ASSET operations"
ODEs and Integrators - "Defining solution spaces and integrating the dynamics"
Phases - "Setting up optimization problems"
 Optimal Control Problems (OCPs) - "Configuring complex, multi-phase optimization problems"

Day 2: Using the "Astro Library" for quick astrodynamics modeling
Two-Body Problem Example
 N-Body Problem Example
CR3BP Example
 Ephemeris Pulsing Rotating Example

ASRL 3

Astro Library

ASRL 4

Where is Astro?

 Astro comes bundles with the ASSET install
 Can be found in “Site-Packages” of wherever your ASSET virtual environment is

While the core of ASSET is the underlying C++ tools and their python bindings, ASSET ships with additional
functions for user convenience

Astro is useful to quickly get models up and running, using prebuild astrodynamics frames written in Vector
Function syntax

Existing tools currently include:
Astrodynamical constants (gravitational parameters, units, etc.)
Simplified models (two-body, CR3BP, etc.)
Ephemeris models (N-body, Ephemeris Rotating, etc.)
Engines/Accelerators (low-thrust engine, solar sail, etc.)
Data handlers (spice wrapper, date conversion, etc.)
More to come!

ASRL 5

What is the Astro Library?

ASRL 6

Astro Model Types

 In general, models in Astro can be defined as either “simplified” or “ephemeris”
 While “simplified” models can stand along, “ephemeris” models need a “frame” defined
“Frames” use JPL SPICE kernels on the backend to handle planetary data

Model
Type?

Model
Created

“Simplified”

“Ephemeris” Frame
Created

Integrators,
phases, etc.

ASRL 7

Model Instantiation

 To conduct proper numerical optimization, all Astro models are nondimensionalized

 Astro models are instantiated with dimensional terms, and the nondimensionalization occurs
behind the scenes
 This is handled via “characteristic” terms for each unit type
 An instantiated model class has lstar, vstar, and astar defined as properties (length, velocity, accel.)
 To nondimensionalize a term, divide it by the appropriate “characteristic” value (i.e., 100 meters / lstar)
 Redimensionalization is as simple as multiplying an ND term by the “characteristic” value

Using the Astro Constants library helps ensure all models and dimensionalization terms use the
same underlying units
 All units in Astro.Constants are given in meters, kg, and seconds
 For example, Astro.Constants.day = 86400.0 (seconds)

ASRL 8

Astro Utility Functions

 On top of the models and frames provided in Astro, there are a wide range of utility functions
to make analysis easier and more consistent

These utilities include:
 Constants
 SPICE data management
 Date conversion tools
 Plotting functions

Many of these will be demonstrated in the following examples

Astro Demo 1:
Two-Body Model

ASRL 9

ASRL 10

Model Definition

 The simplest example of orbital mechanics is the two-body equations of motion
 Consists of an arbitrary cartesian set of right-handed basis vectors
 Utilizes point mass acceleration, with the attractive body at the origin

 Model doesn’t require a frame, only needs gravitational parameter and lstar

�𝑥𝑥
�𝑦𝑦

𝑧̂𝑧

ASRL 11

Demo Overview

 This first demo will show how to instantiate and use the TwoBody model in Astro, along with
how to model and optimize impulsive delta Vs

 we will use a Moon centric model, with a predefined initial condition of a suborbital trajectory

 A delta V will be applied and optimized to attain a desired semi-major axis value as part of a
guided example

Finally, you will have a chance to try and optimize a circularizing burn on your own!

ASRL 12

Demo Imports

ASRL 13

Model Setup

ASRL 14

Cartesian to Keplerian Elements Vector Function

 Function definition provided in
the “UserProvidedInputs.txt” file

 This definition is only meant to
handle elliptical orbit states!

ASRL 15

Set Up Initial Guess (Suborbital)

 Initial Condition provided in
“UserProvidedInputs.txt”

ASRL 16

Set Up Event Detection Integration

ASRL 17

Set Up First Burn Initial Guess

ASRL 18

Initial Guess 2 Should Provide:

ASRL 19

Define Semi-Major Axis Constraint

ASRL 20

Configure Phases and OCP

Used later for link
constraints

ASRL 21

Configure Phases and OCP (cont.)

Your Turn!

ASRL 22

Next Challenge:
 Using what is written so far in demo 1, let’s add another phase that performs an optimized
circularization burn

This new phase can be added to the end of the orbit raise burn, and both burns can be
optimized together in a single ocp

ASRL

23

ASRL 24

A Few Hints:

 Your new trajectory arc will need the following:
 An initial condition (recall how we added a delta V guess for ig2)
 An initial guess -> integrate the initial condition
 A “phase” added to the optimal control problem, along with proper constraints
 Speaking of constraints, instead of the sma constraint you will need to define and use an eccentricity constraint

 The ocp has already solved 2 of the 3 trajectories in it, so you can use ocp.optimize() instead of
solve_optimize()

 To avoid numerical issues, constrain final eccentricity to be 0.0001, not 0!

 I integrated/constrained the new phase to be 3 hours to show a full orbit revolution, but this is arbitrary

Exercise 1 Answer Key

ASRL 25

ASRL 26

Define Eccentricity Constraint

ASRL 27

Initial Guess and Phase Creation

ASRL 28

Add To OCP and Optimize

ASRL 29

Final Solution

ASRL 30

Save Traj Data

Astro Demo 2:
N-Body Frame

ASRL 31

ASRL 32

New Imports

 Provide additional imports as needed for N-Body Modeling

ASRL 33

Model Definition

 The N-Body frame is a planet centric ephemeris model
 Leverages JPL SPICE kernels for ephemerides and frame definition
 Defaults to point mass acceleration, with J2 gravity as an option

 This Model requires a Frame

�𝑥𝑥
�𝑦𝑦

𝑧̂𝑧

Model: an instantiated ASSET ODE that exposes
ASSET Integrators and Phases
(The last example used the two-body model)

Frame: a utility class that contains important
methods and properties that a Model can use
(The N-Body Frame holds the SPICE ephemerides)

ASRL 34

Set Constants and Furnish the SPICE Kernels

*The “kernels” folder provided needs to
be added to your working directory

ASRL 35

Define the N-Body Frame

ASRL 36

Reuse Functions from Demo 1

 In this new script, copy over the utility vector functions we wrote for demo 1

This includes:
 Cart2Kep
 SemiMajorConstraint
 EccConstraint
 DVCost
 MoonDist

 Functions you use often can of course be saved into a utility function script or python module
to be imported into projects

ASRL 37

Next Challenge

 Now try to create the same 3 phase optimal control problem from Demo 1, this time using the
N-Body Model we just defined

Hints:
 Remember that an ASSET “phase” is spawned from an ASSET Model

ASRL 38

Final Solution

Astro Demo 3:
CR3BP Frame

ASRL 39

ASRL 40

Model Definition

 The Circular Restricted 3 Body Problem (CR3BP) has already been addressed in Day 1

 In the Astro Library, CR3BP is a simplified Model that doesn’t require a Frame

ASRL 41

Imports

ASRL 42

Configure CR3BP Model and Define Constants

ASRL 43

Create a Low-Thrust Engine and Low-Thrust CR3BP Model

 The LowThrustAcc model from Astro.Extensions.ThrusterModels accepts either a
nondimensional or a dimensional acceleration value as input
 The other input should be set as “False”
 The model instantiation is of the form “LowThrustAcc(<Nondimensional Acc>, <Dimensional Acc>)”
 We use a dimensional 0.005 (m/s^2) for this example

 The “cr3bp_lt” Model is entirely independent of the base “cr3bp” Model already instantiated

ASRL 44

Make a Prograde Control Law and Low-Thrust Integrator

ASRL 45

Generate Initial Guesses

*The initial condition values are included in
“ASSET_Training_Files/Astro Library (Day 2)/UserProvidedInputs.txt”
Starting on line 72

ASRL 46

Create Low-Thrust Arc Initial Guess and Plot

ASRL 47

Create Interpolation Table for Halo Orbit Rendezvous

ASRL 48

Make a Rendezvous Constraint Vector Function

 Python inputs include the “InterpTable1D” for the target, and ASSET Arguments for “states”
(position and velocity) and a “rendezvous time” that is used for InterpTable1D lookup

ASRL 49

Construct Phases

ASRL 50

Construct Phases

ASRL 51

Construct Phases

ASRL 52

Construct Phases

ASRL 53

Next Challenge

 Using these phases, construct an Optimal Control Problem for a low-thrust transfer that starts
on the LLO and arrives on the target halo, minimizing low-thrust burn time

Hints:
 During impulsive maneuvers we expected discontinuity in velocity between phases, is that still true in

this case?
 Is minimizing low-thrust burn time going to be handled as a link objective (between two phases) or

handled directly by one of the phases?

ASRL 54

Solution

ASRL 55

Plot and Save Final Solution

Astro Demo 4:
EPPR Frame

ASRL 56

ASRL 57

Model Definition

 The Ephemeris Pulsing Rotating (EPPR) Frame is an ephemeris Model that utilizes CR3BP basis vectors

 Due to leveraging SPICE ephemerides, the EPPR Model requires a Frame

ASRL 58

Model Definition (cont.)
 EPPR is dynamically scaled to maintain unity distance between P1 and P2

 The Frame dynamically computes ephemeris perturbations and frame pulsing

 EPPR is ONLY defined for fixed, user-defined epoch ranges established at Frame creation

ASRL 59

Imports

ASRL 60

Read CR3BP Trajectory Data

ASRL 61

Configure the Frame and Models

ASRL 62

Next Challenge

 With the Model defined and CR3BP initial guess imported, create the optimized transfer from
LLO to the target halo in the EPPR Model

Hints:
 Remember, instantiated Models are used to create ASSET “phases”
 “Phases” need initial guesses, which we have already created for this example

ASRL 63

Solution

ASRL 64

Results

Thank you!

ASRL 65

Contact Info:
Aaron Houin – ajhouin@crimson.ua.edu
Professor Sood – rsood@eng.ua.edu
ASSET Documentation: https://alabamaasrl.github.io/asset_asrl/

mailto:ajhouin@crimson.ua.edu
mailto:rsood@eng.ua.edu

	Slide Number 1
	Training Overview
	Slide Number 3
	Where is Astro?
	What is the Astro Library?
	Astro Model Types
	Model Instantiation
	Astro Utility Functions
	Astro Demo 1: �Two-Body Model
	Model Definition
	Demo Overview
	Demo Imports
	Model Setup
	Cartesian to Keplerian Elements Vector Function
	Set Up Initial Guess (Suborbital)
	Set Up Event Detection Integration
	Set Up First Burn Initial Guess
	Initial Guess 2 Should Provide:
	Define Semi-Major Axis Constraint
	Configure Phases and OCP
	Configure Phases and OCP (cont.)
	Your Turn!
	Next Challenge:
	A Few Hints:
	Exercise 1 Answer Key
	Define Eccentricity Constraint
	Initial Guess and Phase Creation
	Add To OCP and Optimize
	Final Solution
	Save Traj Data
	Astro Demo 2:�N-Body Frame
	New Imports
	Model Definition
	Set Constants and Furnish the SPICE Kernels
	Define the N-Body Frame
	Reuse Functions from Demo 1
	Next Challenge
	Final Solution
	Astro Demo 3:�CR3BP Frame
	Model Definition
	Imports
	Configure CR3BP Model and Define Constants
	Create a Low-Thrust Engine and Low-Thrust CR3BP Model
	Make a Prograde Control Law and Low-Thrust Integrator
	Generate Initial Guesses
	Create Low-Thrust Arc Initial Guess and Plot
	Create Interpolation Table for Halo Orbit Rendezvous
	Make a Rendezvous Constraint Vector Function
	Construct Phases
	Construct Phases
	Construct Phases
	Construct Phases
	Next Challenge
	Solution
	Plot and Save Final Solution
	Astro Demo 4:�EPPR Frame
	Model Definition
	Model Definition (cont.)
	Imports
	Read CR3BP Trajectory Data
	Configure the Frame and Models
	Next Challenge
	Solution
	Results
	Thank you!

