Numerical Method to Calculate Spacecraft
Environmental Heating From Celestial Bodies
With Non-uniform Surface Properties and
Temperatures
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Description
e Algorithm calculates environmental heating for a S/C near a celestial body

e Approach is to discretize the body into small enough elements as to consider

each flat, then the heating from the celestial body to the S/C is the sum of the
individual contributions

— Any element for which €, or €, > 90° is discarded (planet IR and reflected solar)
— Any element for which €; is > 90° is discarded (only relevant for reflected solar)

e dF,,=[cos€,cosE, /(¢S] dA,
* Planetary infrared heating is sum of q,.."dF
» Solar reflected heating is the sum of Gs-cose;-albedo-dF

®),dA,
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e S/C self-shadowing effects
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Extensions

Ray tracing codes, such as NVIDIA’s OptiX, can be used to
efficiently characterize the S/C geometry

Blockage array for each S/C surface created separately by
ray-tracing program (only needs to be run once, unless S/C
surfaces articulate)

Heating algorithm applies percent blockage from this array
given the direction of vector S for each element of the
celestial body

Example shown to the right is for the bottom FPAA surface
on the MESSENGER spacecraft (unblocked rays shown) 4

e (Can be modified for the geometry of any celestial body

Ray tracing for concave bodies (similar implementation to
the self-shadowing example)

: : ' : | - \
e Varying surface properties and temperature / ﬁ;\ :

Moon, Mercury, asteroids have extreme temperatures

Planet albedo variation
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Mercury Thermal Environment

* High solar heating

— 4.7 to 11 ESC (Earth Solar
Constant)

e Extreme and highly variable
planetary heating
— Surface emissivity 0.93
— Virtually no atmosphere
— Rotation once per 59 days

— Temperatures range from -163
to 451 °C (at perihelion)

MESSENGER thermal environment was extreme, with an orbit that changed constantly,
and S/C planning was executed on a fast schedule L
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MESSENGER Orbit -~
Noon-Midnightorbit
] ) » y ) ol __Dark-side perfapsis
e Orbit details chosen by comprehensive thermal analysis k- D
— Planned for one Earth year (lasted more than four) Dawn-Dus,k"(Srbit
—  Orbit relatively inertial A L CRR sSun
— Dawn-dusk at Mercury perihelion ‘ ® *
— Results in two hot seasons, at Mercury True Anomaly \ ,/""Dawn-Dusk orbit
(MTA) 1000 and 2800 Noon-Midnight orbit Mercury perihelion
“\_ Sun-side periapsis
e  Orbit period changed from 12 to 8 hours after the . WY * '
primary mission
30 Apr 2015 18 Mar 2011

— Less time for components to cool off :
55.7eN latitude 60€eN latitude

* Periapsis altitude changed frequently
— Managed with Orbit Correction Maneuvers (OCMs)
— Was not of great impact thermally (until it became zero)

e Orbital line of apsides rotated about Mercury throughout
the mission

— Was 60° N at MOI, to 84° in 2013, back down to 55.7° at
the end of mission

— Caused one season to become hotter, and the other to be
less hot -

Rotation of the MESSENGER orbital line of apsides is what made the seasons at the end
of the mission so thermally challenging. g
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Vector input
(mission design,
GNC, or SciBox)

| MESSENGER thermal
analysis process’

“Thermal analysis process has environmental heating
calculations as presented here, as well as internal heating
and integration of the total heating to get temperatures
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Thermal process used to evaluate the S/C position and attitude plan only looks at critical

components, but runs with very little setup and can evaluate full-mission time scales.



NQ%A wsmmmosror (@] JOHNS HOPKINS Vi ESS EN G |

e j

PPLIED PHYSICS LABORATORY MErcury Surface, Space ENvironment, GEochemistry, and Ranging

[ S S '
TN

Benefits

Thermal analysis process can be streamlined to take input
directly from mission design/GNC and generate
temperature plots in one step

— Remote command line execution, even from an iPhone

Heating calculations run on a GPU for enhanced Minimal client side
requirements
performance

— Since each time step is independent, heat rate calculations are
“ridiculously parallelizable”, and a 500X speed improvement was
achieved for MESSENGER over serial versions of the code

— Full-mission time scales are possible, allowing optimization studies
Customized graphics to help diagnose S/C issues

Increased science return from MESSENGER
— Authorized out-of-the-ordinary tasks, like comet observations

— Pushed some S/C components to survival limits near end of mission

- e Mercury surface visible to
Technique could be adapted and used for other missions  £paa for a given time step

— Lunar orbiters and sample return missions

— . Comet proximity operations
— Europa solar array eclipse predictions, from any solar system body S ] T



